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Preface

This volume, the second of three volumes which examine the noise
attenuation value of a flexibly-supported bearing, is divided
into two parts:

Part I - Attenutation of Rotor Unbalance Forces
B Flexible Bearing Supports

Part II - Unbalance Response Of A Uniform Elastic
Rotor, Supported In Damped Flexible Bearings

The other two volumes complete a study aimed specifically at an
investigation into the effect of a hydraulically supported,
tilting-pad, journal bearir on the attenuation of noise origi-
nating from rotor unbalance. Volume 1, Spring and Damping
Coefficients For The Tilting-Pad Journal Bearing, provides an
analytical method for determining the spring and damping
properties of the bearing oil-film with the results presented
iii curves for typical tilting-pad bearing geometries. The
third volume includes (1) a generalized-rotor analysis and
(2) experimental results.

Mechanical Technology Incorporated was primarily responsible
for the analytical portion of this study - while Westinghouse
Electric Corporation designed and conducted the experimental
test.
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ABSTRACT

This report is concerned with the attenuation of the force transmitted

by an unbalanced rotor. The attenuation is achieved by a flexible bearing

support. The report presents an analysis of the unbalance vibrations

of a flexible, symmetrical, two-mass rotor supportedin fluid film bearings

which in turn are mounted in flexible supports. The fluid film in the

bearings possesses both flexibility and damping. The analysis takes into

account both static and dynamic rotor unbalance and gives results for the

rotor amplitudes and the transmitted force as functions of the system

parameters. The analysis has been programmed for a digital computer and

a description of the two computerprograms is included. Numerical results

have been obtained and are summarized in 24 design charts.
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INTRODUCTION

Among the principal noise sources on board a ship are the vibrations trans-

mitted from the various pieces of rotating machinery such as the main pro-

pulsion unit, the auxiliary machinery, etc. In attempting to reduce the

transmitted vibrations two general approaches are available:

a) eliminate the causes responsible for the generated noise by

better rotor balancing, closer manufacturing tolerances, etc.

b) attenuate the noise by means of vibration isolation

Experience has shown that the former approach yields, at best, moderate

gains due to the limitations imposed by practical considerations. Hence,

increased attention is given instead to the possible methods of vibration

isolation. A key consideration in the application of this approach is to

attenuate the noise as close to its source as feasible and prevent the vibra-

tions from setting too heavy masses in motion. This may be accomplished by

mounting the bearing housings on flexible supports.

It is the purpose of this report to present an analysis of the noise atten-

uating characteristic of a flexible bearing support. Specifically the analysis

establishes the equations for determining the support stiffness which will

achieve a desired noise attenuation. The analysis takes into account the

flexibility of the rotor, the damping and stiffness characteristics of the

bearing film, the mass of the bearing housing and the stiffness and damping

of the support. Both static and dynamic rotor unbalance is considered.

Numerical results have been computed for a wide range of support and rotor

parameters. The results are presented in 24 graphs giving the transmitted

force and the rotor amplitude as functions of the rotor speed. The graphs are

intended to be used for selecting the support parameters (e.g. stiffness) to

achieve a desired noise attenuation over a given speed range.



-3-

DISCUSSION

The unbalance which is always present in a rotor gives rise to a dyna-

mical fo 'ce at the bearings with the same frequency as the speed of the

rotor. Some attenuation of the force takes place in the bearings since

the fluid film possesses both flexibility and damping (see Refs 1,2,3, 4

and 5). However, to obtain an appreciable force attenuation it becomes

necessary to vibration isolate the bearings by means of a flexible support

(e.g. a hydraulic support). The magnitude of the resulting attenuation depends

on the stiffness of the support and the dynamical characteristics of the

rotor-bearing system. It is the purpose of the present report to study

this attenuation and to determine the effect of the parameters of the

system

The system is represented by the model in Fig. 1. It consists of a flexible,

symmetrical, two-mass rotor supported in two journal bearings. Having two

rotor masses makes it possible to consider both static and dynamic rotor

unbalance. Each bearing is mounted on a flexible support with a specified

stiffness and a specified damping. The journal bearing is characterized by

4 spring coefficients and 4 damping coefficients derived from lubrication

theory (Refs.l2,3,4,5). The mass of the bearing housing is also included

since it affects the force transmission.

On the basis of the selected model the equations of motion are set up for the

rotor and the support. Because of the large number of parameters it is of

limited value to derive a closed form solution. Instead, the equations are

reduced to a form convenient for numerical evaluation and programmed for a

digital computer. Two computer programs, both for the IBM 1620 computer, have

been written. They are described in detail in the Appendix including instruc-

tions for using the programs. The results from the programs include the force

transmitted to the foundation, the rotor amplitudes and the amplitude of the

bearing housing. Extensive calculations have been performed and the data have

been plotted in Figs.2 to 25. The employed values of rotor stiffness and weight

and of support stiffness are selected to cover the range normally encountered in

Navy applications. The use of the graphs is explained in the following section.
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A study of the graphs reveals that a very significant attenuation of the

transmitted force can be obtained, at least in theory. Note that the

"unattenuated" force is not shown in the graphs but would appear as a series

of straight lines. They are determined by a simple relationship given in the

following section. However, even small amounts of damping in the support

diminish the attenuation and in practice this is unavoidable. Furthermore,

system resonances tend to become accentuated in a way not found in the con-

ventional construction, e g. the resonance of the bearing housing becomes

important. Therefore, the graphs should serve as a guide line only, they are

not intended to be final design charts.

Since it is known that a flexible support may adversely affect the stability

of the bearing, i.e. the speed a, onset of oil whip may be lowered, a study

of the stability is also undertaken. it is concluded that even if a flex-

ible support does lower the oil whip speed when there is no damping in

the support it takes only a rather small amount of damping to restore, and

even increase the stability limit.
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RESULTS

The main purpose of the numerical results (Fig.2 to 25) is to illustrate

the attenuation of the transmitted force due to a flexible support. To

obtain a high attenuation as required in Naval applications the support

is very soft in comparison with the bearing stiffness.

The rotor configuration is shown in Fig. i. The rotor is symmetric and

consists of two masses M on a flexible shaft. There are two bearings which

are flexibly supported with the support stiffness, K p. In addition, the mass

m of the bearing housing is included because the support resonance may be-

come important when the stiffness is small. The support damping has been

neglected since it is in general kept small in order to achieve the force

attenuation.

The results are given in form of dimensionless parameters:

dimensionless transmitted force-

dimensionless journal amplitude

dimensionless rctor mass amplitude:

speed ratio- W"

The rotor-bearing-support parameters are.

bearing stiffness:

bearing damping: C-CX

W
support stiffness, W

support mass- M

rotor flexibility parameter Wei
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where:

W - bearing reaction, lbs.

M - half of the total rotor mass, lbs.sec 2/in

d% - influence coefficient for rotor (inverse rotor stiffness),
Equation (4), in

lbs.

- distance between rotor masses divided by rotor length,
Equation (5).

- eccentricity of rotor masses, inch

C - radial bearing clearance, inch

W - rotor speed, rad/sec.

CO = I/VMO( ) critical speed of rigidly supported rotor, rad/sec.
2

Ii - support mass, lbs.sec /in

Kp - support stiffness, lbs/in

KW - bearing stiffness, lbs/in

Cxx - bearing damping coefficient, lbs.sec/fn

F - force transmitted to foundation, lbs.

XI - amplitude of rotor mass, inch

X? - amplitude of journal, inch.

The numerical data cover the following range of rotor-support parameters:

VA - .3 , 3 ahd Io= C 1 2 - J I /
C P= I0- 3  i. io- 3 10- 2  4KJ 1'10- 2

M!I-=.05 ~ 1
Since in the present case the bearing is much stiffer than the supportit has

virtually no influence on the results. For completeness the bearing is assigned

the coefficients:

'37 (~.Jit 4. 7o
t oW

which is representative of a 4-shoe tilting pad journal bearing.
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Interpretation of the Charts

The data apply to both static and dynamic unbalance such that for static

unbalance f=/ and 0( corresponds to the first flexural rotor critical speed,

whereas for dynamic unbalance ? represents the distance between rotor masses

and ot corresponds to the second flexural rotor critical speed.

In Figs. 2 to 25 two resonances are evident. The first resonance is the

rotor resonance which for a soft support occurs at:

or in dimensional form:

5~i~~%W --AkiCCI (2hd N~ ,

Note that for the second mode the angular restoring stiffness is

( f =span between bearings) and the transverse mass moment of inertia of the

rotor is I (f dM leading to the stated result for the resonant speed.

The second resonance shown by the graphs is the resonance of the support:

VZ64port resoaw, r

or in dimensional form:

where 1/ represents the rotor stiffness. Hence, in schematic form Figs. 2

to 25 become:
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TrMhSOIUt4

Forcc:

Wd

inI

lournei &.VI~ik4de:

II

~4~Cr. spee 4

Since the support danping has been neglected the resonance values 
are very

large in the graphs. However, some damping is always present in the support

and an estimate of the peak amplitude and transmitted force at 
the rotor

resonance can be obtained fromt

peak journal amplitude: 
( g- 1W-

W W

peak transmitted force: 
zr W eai

In dimensional form:

journal amplitude: 
dXopeain

transmitted force: F pEk ( kp ()peA.k t5

where:

d - support damping, lbs.sec/in
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When the rotor is considered rigid and the bearings are also taken to

be rigid the transmitted force becomes:

F Mdco' lbs. (rigid rotor)

or in dimensionless form

HE 2

Comparing this value with the values of the transmitted force for a

flexible support the magnitude of the force attenuation can be estimated.

The above "unattenuated" force would appear as straight lines with a

slope of 2 in Figs. 2 to 9. There would be a line for each rotor flexi-

bility parameter.
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Numerical Example

Let it be desired to vibration isolate a steam turbine rotor with the

following data:

Total weight: 4,400 lbs.

Transverse mass moment of inertia around CG: I = 1.35106 lbs.in
2

Span between bearings: = 74 inch.

First flexural critical speed: = 25,200 RPM

Second flexural critical speed: = 73,000 RPM

The rotor is approximately symmetrical around the CG so that:

Bearing reaction: W = 2,200 lbs

Rotor mass per bearing: M = 2,200 lbs = 5.7 lbs.sec 2/in.

From the formula:

the influence coefficient c4 is calculated as:

2.5'10 b (lst mode)

3-i10-' (2nd mode)

For the second mode the two rotor masses M are separated by the distance (.)
where I is the rotor span. Thus:

S(Fe) 2 M = I
from which:

2-.3' = .75
Ir a ?00

For the first mode = by definition.

Setting the radial bearing clearance:

-3C =4.10 inch



the rotor flexibility parameter [ becomes:

I.3 '7.Io (1st mode)

Cr 7'3"13 (2nd mode)

These values are outside the range used in the graphs making it necessary

to employ a scale factor on the influence coefficient. This can be done

because the rotor is very stiff. Hence, if C is multiplied by 7.3 and

13.7 respectively the new values becomes ? =.l for both the first and second

mode. The corresponding flexural critical speeds become:

25,200
W), V = 9,300 RPM (by scaling)

73,000
v- = 19,700 RPM (by scaling)

In order to select the support stiffness it is seen from Figs. 2 to 9

that it is necessary to specify the lowest speed at which attenuation is re-

quired. Then Kp must be selected such that the system resonances are well

below this specified speed. In the present case it is desired to achieve a

substantial attenuation at 1100 RPM or for use in the charts:

Cu, 9,300

= _ 1,100" = .056
z 19,700

The "unattenuated" transmitted force becomes a straight line in Figs. 2 to 9

determined by:

i.e. a line passing through two points:(W)jC ) = O.., ma ;,-
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It is found that IO= is the highest value of the support stiffness

which gives attenuation for both modes at 1,100 RPM. From Fig,. 6 (or 7):

actual "unattenuated" Attentuation

(.) force force at 1,100 RPM

for lol00rpm _ N .tif. '?O'O )
ist mode (static unbalance) .118 .01 .135 22.6

2nd mode (dynamic unbalance) .056 .0135 .03 6.9

The actual value of the support stiffness Kp is calculated as:
= 2?00 -.k' Io 10 5,oo "

The bearing housing weighs 100 lbs. Thus:

100 .045 (Ist mode)

F =F 2' 2 00 - .20 (2nd mode)

Hence, Fig. 6 applies for the first mode and Fig. 7 for the second mode.

However, for the original calculated values of the rotor flexibility parameter

the support resonance is very insignificant.

The journal and rotor amplitudes can be found from Figs. 14 and 22 (or Figs. 15

and 23 for the second mode). Since the rotor is very stiff there is no difference

between the two amplitudes in the speed range of interest, say up to 10,000 RPM.

Still using the scale factor on o( the rotor resonances occur at:

W' =032 5 RPM (1st mode)

WV, '32't 630 RPM (2nd mode)

Let the rotor unbalance be 4 oz.inch per rotor mass, i.e. the rotor eccentricity

6becomes: 4 /= Z 1 1 3 1 6 - 3  i h,,

At speeds above 1200 to 1300 RPM the journal amplitude is practically constant:

i"O"  (1st mode)I XA=
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Let there by a small damping in the support, given by the damping coefficient

and assume the value:

d=2o

Hence, the peak amplitude at resonance can be calculated from the previously

given formula.

(~~~~~~)~A Ga llJO ~ r 1t mode)
peJ1 J I 30 0 4.2 (2nd mode)

In actual values the peak journal amplitude becomes:

()(2)P "a S.F - "3 inch
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ANALYSIS

In order to account for both the first and the second critical speed

and also consider both static and dynamic unbalance the rotor is re-

presented by a symmetrical two-mass rotor:

M M

Rotor Equations

Let the rotor stiffness be described by the influence coefficients Ot.

and G(.6 , applying at the concentrated masses. The rotor unbalance

is introduced by giving each mass an eccentricity 6 Hence, the

equations of motion are

(1) ~ ~ ~ W + ~( M M~j6CbS4)t) + +~~I1 MO'chos4,t)+

where the upper sign applies to static unbalance (first mode) and the

lower sign is for the dynamic unbalance (second mode). Eq.(l) may also

be written:

(2) =1  -(Mxi+o( frC6O&SCot

with the convention:

(4) G= A 9"M+ L1b i* ee1 , ,eco'hj Pode

(5) { IStatic ktmba~.c, first mode



-15-

The rigid support critical speed is then given by:

(6) CO

Set:

(7) X, ce

(8) Cx.~f

(9) >"3f 6'j

and similarly for the y-direction. Substitute into Eq.(2) and (3)

to get:

(10) x,- (2+

(11

Bearing Equations

The rotor is supported in two identical bearings. Each bearing is re-

presented by four spring coefficients: Kxw, Kwj k'j, j k and four

damping coefficients: Cxv Cx, ICly , . A force balance yields:

(12) FMx+MW2jCO5&wt] = R + [53~1
(13) M ' -i~ +Mocfsinlt] fq,_ - ]:k,((_-3)+C.( _,)+w, .

Set:

(14) 
C

CWCWX
(15) CJCxX- W



-16-

and similarly for the 6 remaining coefficients. Here C is the radial

bearing clearance and W is the load on the bearing. Introducing Eqs. (7)

to (10), (14) and (15) into Eqs. (12) and (13) yields:

(16) [k4V~e--C4 2 +[4 -a

where:

Support Equations

The bearing housing is supported flexibly by a spring K1 and a dashpot CP.

Denoting the mass of the bearing housing mi the equations of motion are:

(19) hX kp jF.X-Cp( 3 + )A _F)++W

and similarly for the y-direction. To make dimensionless set:

(20) A =cw--=

(21) 
d = C

W

(23) 
WO(

(24) -M

Solve Eq. (19) together with Eq.(16) and (17) to get:

W ((x, +1)
(25) X W)

(26) 
(9-a
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System Equations

Combine Eqs. (16), (17), (25) and (26) to get the equations in

their final form:

0 ~%e(+ 6.)])2 + F k~ i ~y ,1 h +dx,- dxV]
(27)

with the following abbreviations:

( 2 8 ) -W -) C .. f

(29 ) 6( i C.4

(30) 6jr

', + CCU ctq
(31) t, =

These equations may be solved for the journal amplitudes X. (AIh from which

the rotor amplitudes and the bearing amplitudes can be determined through

Eqs. (10),(11),(25) and (26). The solution is obtained numerically by a

computer.

Singularities

When the rotor speed CO is equal to one of the rigid support rotor

critical speeds, i.e. - = 1, becomes infinite. If dfl# etc.,

are finite Eq. (27) yields:

(32) X 2 C-0

The bearing housing amplitudes are-found through Eq. (19):1+6114+i dxyJ

(34) I+ Xi=

(35) d= I - (I.+d4,)(+d,) -d~ I
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The rotor mass amplitudes are finally given through Eqs. (12) and (13):

(36) X. I--~ I

(37) = I *  )W%'Ix.(X X3)"+(" iW(k"7)1 z2 --3)] I fk- d) #O

If an addition to X= @j x 6 , etc are also infinite the

above equations reduce to:

(38) X, = X z =X 3  0-I

(39) 43 , =0

so that the amplitude is 1800 out of phase with the unbalance while

the center of gravity of the rotor does not move.

Eqs. (38) and (39) are actually also valid even if joo as long as

Transmitted Force

The force transmitted to the bearing housing, denoted F8 I is given by:

and similarly for the y-direction. Making use of Eqs.(12), (13), (10) and

(II) this equation reduces to:

(40) C' F(W

(41) v PS

The force transmitted to the foundation, denoted F, is given by:

Fy = Kp W3-+-CpX3

F = Kfp qT3+ Cptj
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which through Eqs. (25) and (26) becomes:

(42) We ON)

(43) F4 (,WeS #

When retur the above equations become indeterminant. In that case

use the equivalent equations.

(44) FS,

(45) Fg

(46) F, + i (Q)'6)jd1 X
(47) q kt~fh~] 3

Stability

Since the support flexibility and damping influences the rotor-bearing

stability (oil whip) it is of interest to analyze this effect. To do

this return to Eq. (27) and investigate the eigenvalues of the determinant

of the homogenous equations. Introduce the symbols:

(48) C

(49) (J

where V is the eigenfrequency. Hence, the determinant of Eq.(27)

becomes:

(50)

[k+ 61X~- 0+ 6 -o-,]
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where:

(51) i = e

(52)

(53)- ()

Look first at the case where the supports are rigid, i.e. =- -e--0.

Equate the real and imaginary parts of Eq. (50) to zero to get:

() 9 xcC 1=

(55) 4- ,rpt

Substituting Eq. (54) into Eq.(55) allows for computing i.e. the

ratio between eigenfrequency and running speed. Substituting into Eq.(51)

gives the value of S, i.e. the rotor speed at instability as a fraction

of the natural frequency Wh, .

Next assume the supports to be flexible but without damping, i.e. d=O.

For abbreviation set:

(56) A= J -
and the solution becomes:

(58) = (~ T I(~
( 'UCG cvcj -wC W jt

i.e. the eigenfrequency ratio is unchanged. To determine the rotor

speed at instability, i.e. S expand Eq. (57):

(59) '[ TF . 0

which is a quadratic equation in (5 . Hence, 5 can be obtained with

known from EM. (58).
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It is seen that there are two solutions for the speed ratio ,

both with the same frequency. One solution corresponds to the

coincidence of the rotor critical speed (including the effect of

the 'flexible support) with the eigenfrequency , the other solution

stems from the instability of the pedestal mass. This was checked

numerically as follows:

For rigid support ( = ) we may use Eq. (54) and (55) to determine:

where We is the threshold speed for rigid support. Let (J¢,o denote

the corresponding actual critical speed. Then, by hypothesis:

Introduce an equivalent bearing stiffness ke such that:

Co M

Hence,

or

(60) 
S

Now introduce the support stiffness to get an effective stiffness:

(61) C e te W

W W

and the corresponding critical speed becomes:

There fore

(5 )Z=- = C We

or

(62) SC

which is the first solution. To evaluate the second solution, equate

the support mass resonance to the eigenfrequency:

h)=
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or, CI, + K

(z,) ( 4)2
Thus: 

M

which is the second solution. It should be noted that both Eqs. (62)

and (63) are approximate. Their validity has been checked numerically

for selected cases and the difference was found to be less than I per

cent. Finally when the support includes damping set:

(64) A rJ - (s

Eq. (27) becomest

(65) [[0

For convenience introduce:

(66) E-i F-

Expand the determinant of Eq. (65) in its real and imaginary parts:

(68) (kW- E)( - F) +(k F- E)G(Cu F) - k' , -k t C, =0

Solve Eq. (68):

(6 9 ) F . - -
L oC, -t F ) +1 (WC7I-I F)
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Set:

(70) a

(71) 6 '.J + wCi
(72) G K ~- I C~.,c
(73) X F +

Substitute Eq. (69) to (73) into Eq. (67):

(74) 1 '3 +X(W. CU C IV (k) 0C X)+ Kk IX Jf, +&~ (44 4C~)V

This equation has always two roots, a positive and a negative one. Of these

only the positive one can be used as shown later in Eq. (79).

Thus Eq. (74) and, therefore, Eq. (69) can be solved for F and E as functions

of the frequency ratio . They may be considered as frequency dependent

eigenvalues such that E represents "eigen stiffness" and F "eigen damping".

When F is positive the "eigen damping" becomes negative according to fEt. (66).

Having determined E and F it remains to find the corresponding X-value

from Eq. (66). However, it should first be noted that the two actual un-

known are and 5=  ,o Sin-"cethe calculation is performed for a

given Sommerfeld Number 5 the speed W4 is known and the variable is

therefore W.,/ i.e. the rotor mass M . For this reason it is convenient

to redefine the pedestal mass and damping as:

(75) W /AF
z =  .?' z L'D ()

(76) CW WS( Py
-W L/ Q

Hence, Eq. (66) may be written:

(77) E q F X

Solve Eq. (77):
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(79)

Combine the two equations:

(80) 1 P-F k- -A
3F(

Thus, for a range of frequency ratios X with corresponding E and F-values

M can be calculated from Eq.(80). Substituting into the right hand side

of Eq. (79) and subtracting from F gives a difference, designated the

error. Only when the error vanishes has a solution been obtained, i.e.

for a correct frequency ratio.

When the denominator of Eq. (80) has a singularity a false solution occurs

except in the rare case when the numerator is simultaneously zero. For

this purpose it is convenient to have a check on Eq. (80) by solving

Eq. (78):

(81) [E+(~4 Nt- e l+(-1,~ - + r [(i-qt)z+(0p1 = 0

or

(82) 4-1VE( t)

Hence, there is no root when:

(83) E - V E___(-qt__

Within the frequency ratio range from 0 to rigid (Eq. (55)) there may

be up to three roots for ( 'Y'a)
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CONCLUSIONS

1. A flexible bearing support provides an ideal method for attenuating

the force transmitted by an unbalanced rotor. It introduces a minimum

of extraneous resonances (namely one, the resonance of the bearing

housing) and in theory the attenuation can be as high as desired by a

suitable selection of the support stiffness.

2. The damping in the bearing support should be small in order not to

lose the force attenuation.

3. The rotor amplitude at resonance is relatively high but since it occurs

at low rotor speeds it may not be too important. Otherwise the support

may be locked in passing through the resonant speeds.

4. Although the speed at onset of oil whip is lowered by the flexible

support, there will always, in practice, be enough damping in the

support to restore the stability.
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RECOMMENDATIONS

I. The purpose of a flexible bearing support is to achieve a desired

attenuation of the transmitted force. However, the use of such a

support raises questions with regards to the response of the rotor

during onboard-ship operation (ship motion, shock etc). An investi-

gation should be undertaken of this problem with special emphasis

on the actual design of the flexible support. Important factors in

the study should be reliability, low maintenance and simplicity.

2. Although the unbalance is the principal source of noise in a piece

of rotating machinery, vibrations of other frequencies are also

present and may be important (subharmonic rotor vibrations, electric

field forces, etc.). A study of these vibrations should be performed

both analytically and experimentally.
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APPENDIX

Computer Programs

The analysis has been programmed for the IBM 1620 digital computer.

Two programs are written: PN 0125 where the bearing pedestals are

assumed rigid, and PN 0132 where the pedestal'. flexibility is included.

Separate descriptions of the programs are provided below.

PN 0125: Transmitted Force and Response of a Two-Mass Rotor in
Rigid Pedestals

This program calculates the dimensionless transmitted force and the

rotor amplitude for a symmetrical two mass rotor with a given un-

balance. The rotor is supported in two bearings, each bearing re-
'presented by 4 spring and 4 damping coefficients. The pedestals

are assumed rigid.

The transmitted force, the journal amplitude and the rotor mass ampli-

tude are functions of the rotor speed O expressed in dimensionless

form by (Cco.) where 'Wh is the critical speed of the rigidly

supported rotor. However, for the transmitted force and the journal

amplitude a simplification is possible by use of another variable:

(a)) 1

where

(b) (rotor filexibil,'t, pararheter)

W - bearing reaction, lbs.

C - radial clearance, inch

- influence coefficient for rotor, In (see Eq.(4))

- distance between rotor mass, divided by rotor span
(see Eq. (5))

W = critical speed of rotor on rigid supports,
rad/sec.

M rotor mass per bearing, lbs-sec 2/in.
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Since C is inconvenient to use directly an equivalent speed ratio

may be defined by:

(c) Oy I= io I-

By this choice of non-dimensional parameters, a single plot of journal

deflection and transmitted force against equivalent speed ratio will

represent a full range of rotor flexibilities. Since the rotor de-

flection requires the designation of a particular flexibility, the

actual speed ratio is computed in this case. However, for large values

of rotor flexibility, a large range of equivalent speed ratio corresponds

to only a small change in actual speed ratio. Therefore, in this case

it becomes advisable to enter the actual speed ratio and so this pro-

vision is made.

The program also performs a stability analysis, providing, for a given

rotor and bearing configuration, the ratio of eigenfrequency to rotor

speed at the onset of instability and the corresponding rotor speed.

The output is provided in a form that makes it adaptable for automatic

plotting on an X-Y plotter. Since it is anticipated that the output

would be represented on logarithmic scales, the logarithm of the re-

sponse values along with a code for automatic sorting is provided.

Computer Input

Card 1 - 49 columns Hollerith - descriptive text

Card 2 - (514, E12.4) - control parameters

Word 1 - type of computation; if this value is:

1. the input speed ratios are intended to be equivalent
speed ratios

2. the input speed ratios are intended to be actual
speed ratios

Word 2 - number of speed ratios, maximum 18

Word 3 - number of rotor flexibility parameters , maximum 10

Word 4 - intermediate output; if this value is 0 - no inter-
mediate output is provided; 0 0 - intermediate output
(diagnostic) is provided.
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Word 5 - additional data; if this value is 0 - there is no
additional data; * 0 - additional input data
follows the case being computed.

Word 6 - the value of eccentricity ratio corresponding to
the input bearing parameters.

Card 3 - (6E12.4) - dimensionless bearing spring and damping co-

efficients in the order C I _ ___ _
-

__k " , CWG

Card 4 - (6E12.4) - the remaining bearing parameters CW k .

Card 5 - (5E6.0) - the values of the rotor flexibility parameter y, Eq.(b)

Card - (6E12.) - the speed ratios

Computer output

The initial output is in the order,

- program heading

- Hollerith text provided as input

- input control parameter values

- input bearing parameters

Then for the type 1 computation the first output values with appro-

priate headings are, by row

first row - the initial equivalent speed ratio

- the maximum dimensionless journal deflection

- the value of the dimensionless parameter X 'e.fa)

- a column of signs (+ 1) corresponding to the
sign of the log of the speed ratio and pro-

vided for the automatic plotting facility.

. the log of the speed ratio

- the sign of the log of the response value

- the log of the response value

- a code value for automatic sorting
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- second row - the same as the first row, but with the speed
ratio the actual speed ratio, the deflection
the maximum rotor mass deflection, and the third
value the value of rotor flexibility used in the
computation.

- third row the third row is the same as the second row but

for a second value of rotor flexibility, it more

than one is provided. Then the additional rows

correspond to any additional flexibility values.

- last row the last row is similar to the above, with the speed

ratio the equivalent speed ratio and the response

value the dimensionless transmitted force

(maximum value).

From Equation (a) it can be seen that

and so there is no real solution to 45 for values of Y between 0

and -1. For those cases the program prints the message "no solution for

kappa • rho between 0 and -i for rho 2' Then the program proceeds

to the next value of

The last output is the results of the stability analysis. It consists

of three values:

first value - the flexibil-ity parameter,f

second value - the speed ratio of the threshold of instability, G44

third value - the square of the ratio of eigenfrequenc to running
speed at the threshold of instability, .

The output for the type 2 computation is much like that of the type 1

with the exception that, since the equivalent speed ratio is a function

of both the actual speed ratio and the flexibility parameter, each time

a new ? -value is specified for a given actual speed ratio, the equivalent

ratio changes and requires a new journal deflection and transmitted force

computation. Therefore, the order of output is: journal deflection, rotor

deflection, transmitted force, then index 51 and again, journal deflection,

rotor deflection, transmitted force, etc.
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PN 0132: Transmitted Force and Response of a Two-Mass Rotor in
Flexible Pedestal

This program calculates the dimensionless journal deflection and trans-

mitted force of a symmetrical rotor supported by two similar bearings with

flexible pedestals as a function of the speed ratio, - , where Wuh is
WAh

the flexural critical speed of the rotor simply-supported.

The program also performs a stability analysis, providing, for a given

rotor and bearing configuration, the ratio of eigenfrequency to rotor

speed at the onset of instability and the corresponding rotor speed.

The output is provided in a form that makes it adaptable for automatic

plotting on an X-Y plotter. Since it is anticipated that the output

would be represented on logarithmic scales, the logarithm of the re-

sponse along with a code for automatic sorting is provided.

Computer Input

Card I.- 49 columns Hollerith - descriptive text

Card 2.- (614, E12.4) - control parameters

Word I - type of computation; if this value is:

2 - the program performs the rotor response computation only

3 - the program performs the stability analysis only

4 - the program performs both analyses

Word 2 - the number of speed ratios, maximum 18

Word 3 - the number of non-dimensional pedestal to rotor mass
ratios, Li, where =- -l maximum 10.

Word 4 - the number of rotor flexibility parameters 5 , maximum 10

Word 5 - intermediate output; if this value is 0 - no intermediate
output is provided; # 0 - intermediate output (diagnostic)
is provided.

Word 6 - additional data, if this value is 0 - there is no add-
itional input data; 0 0 - additional input data follows
the case being computed.

Word 7 - the value of eccentricity ratio corresponding to the
input bearing parameters.
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Card 3. - (6E12.4) - Dimensionless bearing spring and damlin co-CC
efficients in the order &L. czft .. .--

Card 4. - (6El2.4) - the remaining bearing coefficients, and the pedes-
tal parameters; in the order . C1 v R
where the parameters are dimensionless as defined in the analysis.

Card 5. - (5E6.0) - the values of the mass ratio /A 1

Card - (5E6.0) - the values of the rotor flexibility parameter

For a type 3 computation, the above is all the necessary input; other-

wise the following must be provided.

Card - (6E12.4) - the speed ratios X)

Computer output

The initial output is in the order:

- program heading

- Hollerith text provided as input

- input control parameter values

- input bearing and pedestal parameters

Then for the type 2 computation the next output with appropriate heading

is the value of mass ratio and rotor flexibility, followed by the system

response, in the order

first row - the initial speed ratio

- the dimensionless journal deflection (max.value)
6

- the value of the dimensionless parameter X where

- a column of signs (± 1) corresponding to the sign of
the log of the speed ratio and provided for the automatic
plotting facility

- the log of the speed ratio

- the sign of the log of the response value

- thelog of the response value

- a coding value for automatic sorting
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- second row - the same as the first row, but with the response
value now the dimensionless rotor deflection
and the third value the equivalent speed ratio.

- third row - the same as the first two rows but for the di-
mensionless pedestal deflection P (max value).

- fourth row- the same as the above rows but for the dimensionless
transmitted force I (max. values).Wd

Then the next speed ratio is indexed and the above four values generated.

When the response for all of the speed ratios are computed, a new rotor

flexibility value is indexed and the above sequence repeated. When all

of the flexibility values are computed a new mass ratio is indexed and

the above process repeated.

For the type 3 computation a heading indicating the stability analysis

follows the input. Then four columns of output as follows:

column 1 - the value of the mass ratio

column 2 - the value of rotor flexibility factor

column 3 - the ratio of running speed to rotor flexural critical
speed at the threshold of instability

column 4 - the square of the ratio of eigenfrequency to running
speed at the onset of instability

For the case where there are two real solutions for the running speed

ratio, they are both given.

For the type 4 computation the output after the listing of the input

values is the type 2 output followed by the type 3 output.
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I

cppc

Fig. I Rotor-Bearing-Support System
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NOMENCLATURE

C Radial bearing clearance, inch

CC X CX cv4 1i Bearing damping coefficients, lbs-sec/inch
CU CJI

- . x dimensionless bearing damping
coefficient. Similar for (C, ,q

Cr Pedestal damping coefficient, lbs-sec/inch

D Bearing diameter, inch

(.hn w dimensionless pedestal damping
coefficient

E Real part of eigenvalue of homogenous equations

F Imaginary part of eigenvalue of homogenous equations

F Transmitted force, lbs.

Fm, Y thd I-components of transmitted force, lbs.

Kxx)kx Kjx I() 4 Bearing spring coefficients, lbs/in.

C Wdimensionless bearing springW coefficient. Similar for

Pedestal spring coefficient, lbs/in.

S~ dimensionless pedestal spring coefficient

L Bearing Length, inch

I Rotor span between bearing centers, inch

M Half the rotor mass, ibs-sec 2/in.

hi Mass of bearing housing, lbs-sec 2/in.

N Rotational speed of rotor, RPS

R Bearing radius, inch

WL CD ( ,) Sosmmerfeld number

-C, Ratio of speed at instability and rotor
critical speed

$
tTime, seconds



VV Bearing reaction, lbs.

Xj/91 Amplitude of rotor mass, inch

Amplitude of journal center, inch

F3/ Amplitude of bearing housing, inch

J ) = W , Dimensionless amplitude of rotor mass

-= d Dimensionless :urpittde of journal center
' 6 )

XLb ,Dimensionless amplitude of bearing housing.

0(t O ah Rotor influence coefficient, first index: amplitude,
second index: force, in/lbs.

S(oas. ) for static unbalance, - (otgt4a) for
dynamic unbalance, in/lbs.

W Dimensionless pedestal damping coefficient

- Ratio of instability frequency and rotor speed

6Unbalance eccentricity of rotor masses, inch

con - parameter

Lubricant viscosity, lbs-sec/in
2

/4 / Dimensionless bearing housing mass

E Journal eccentricity ratio in bearing

V Instability frequency, rad/sec

- 1 for static unbalance, - ratio of distance between
rotor masses and total rotor length t for
dynamic unbalance.

r rotor flexibility parameter

6t-O-a dimensionless bearing housing mass

dXxdcIdir ,di Parameters defined by Eqs. (28) to (31)

(G) Angular speed of rotor, rad/sec.

(4, =critical speed of rotor on rigid supports,
rad/sec.
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SUMMARY

The dynamic response of an unbalanced elastic rotor which operates in damped

fluid-film bearings has been investigated. The influence of speed, bearing

operating eccentricity, and of relative stiffness between the rotor and its

bearings have been determined. Results are expressed in terms of rotor maximum

whirl amplitude at several locations on the rotor; and in terms of bearing

transmitted force. Particular attention has been given to the influence of

system parameters on critical speeds, and on the attenuation of bearing trans-

mitted force.

The results are presented as charts which facilitate the design of high-speed

rotors by allowing performance characteristics up to and including the fourth

system critical to be determined directly. The analysis is exact, and the influ-

ence of higher modes is included under all operating conditions. Both static

and dynamic unbalance conditions have been considered.
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INTRODUCTION

General

A heavy elastic rotor has an infinite number of critical speeds, but, in practice,

the operating speed range rarely includes more than three or four of these criticals.

These critical speeds and the vibratory form assumed by the rotor are both directly

influenced by the stiffness and damping properties of the supporting structure,

as well as by the distribution of mass, elasticity, unbalance and damping within

the rotor itself.

Little information is presently available on the dynamic response of rotor

systems to unbalance in the higher modes. The major studies which have been

made to date have been concerned with optimising the rotor-bearing system to

achieve maximum attenuation of transmitted force and rotor amplitude in the

lower modes. Lund and Sternlicht (Ref. 1) used a simple rotor in fluid-film bearings

to investigate force attenuation in the fundamental mode for a variety of bearing

types. Warner and Thoman (Ref. 2) extended this work using a two-mass rotor in

partial-arc bearings. This rotor included the influence of the second mode in

the fundamental rotor motions, and, also, provided data on operation at speeds

including the second critical.

In both cases, the simplicity of the rotor precludes any direct extension of this

work to higher modes. However, such information is desirable in order to opti-

mise the steady-state performance of high-speed rotors which operate beyond the

second bending critical, and to optimise the system run-up and run-down charac-

teristics. Also, the influence of the higher modes on rotor response in the lower

modes and throughout the speed range is not indicated in presently available data.

Such information is required to enable the most efficient attenuation to be deter-

mined. This information is obtained in the present analysis. Finally, the para-

metric conditions under which stable rotor motions may occur during operation in

the higher modes have not been defined up to the present. A simple extension of

the results given herein would allow this to be done.

Scope of Present Investigation

In the present analysis, the motions of an unbalanced flexible rotor which is



-2-

supported in fluid-film bearings are considered. The rotor is assumed to be of

prismatic shape, and to have its mass and elasticity distributed uniformly along

its length. This distribution makes it possible for the solutions to the result-

ing equations of motion of the system to include the influence of all modes

directly. Rotor internal damping is assumed to be negligible compared with the

damping in the fluid-film bearings, A simple uniform shaft was chosen because

it permits a direct analytical solution to be obtained for all required dynamic

properties of the system including the higher modes. This rotor-bearing system

is not intended to simulate any practical case, but it does indicate certain

dynamic characteristics which are common to all cases.

The motions of the rotor are considered to arise from the action of an unbalance

W ke which is due to the weight of the rotor, W, acting at an eccentricity e,

from the rotor geometric centerline. The unbalance is located at a specified

point along the length of the rotor, and its distance fmm the left-hand bearing

is included as a variable in the analysis. This is a "static" unbalance. Any

desired condition of dynamic unbalance may also be investigated by suitably

superposing two sets of static unbalance results to represent the dynamic un-

balance couple. This superposition has been included in the analysis, and

dynamic unbalance results have been obtained. The point at which the desired

amplitude or force response occurs is also included as a variable.

The rotor is supported in a hydrodynamic cylindrical fluid-film journal bearing

at either end. The dynamic properties of these bearings are given in Table I.

This bearing type is commonly used in practice. It is considered in the ana-

lysis by Lund and Sternlicht (Ref. 1), and its characteristics are similar to

those of the partial-arc bearing. Thus, this choice of bearing allows a com-

parison to be made between the present and previous work.

The analysis presented here has been programmed and the following results have

been obtained:

1. a. Rotor amplitude at specified stations for a speed range which in-

cludes the fourth rigid bearing critical.

b. Bearing transmitted force for the same speed range.

2. Rotor mode shape in terms of an optional number of rotor stations for

selected speeds.
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DISCUSSION

Non-Dimensional Parameters

All parameters in the results, Figures 6 through 24, have been made non-dimen-

sional for generality. The parameters and dimensionless ratios used are de-

fined as follows:

1. Notation. Listed at the end of this report

2. Distance ratio, LI/L = 9 Defines the axial location of the unbalance

W • e from the L.H. bearing, with respect to shaft length. Figure 1.

3. Position ratio, Z I/L Defines the axial position of any displacement

measurement within Region 1, measured from the L.H. bearing. Figure 1.

4. Position ratio, Z 2/L Defines the axial position of any displacement

measurement within Region 2, measured from the unbalance position.

Figure 1.

5. Speed ratio, w/ . Ratio of rotor speed c to the fundamental bendingc

critical speed wcn of a uniform rotor in simple rigid end supports. The

speed range covered by the analysis extends to w/w L 24.0. This includesc

the first four rigid bearing criticals.

For the present rotor system CU (%L)2 [I,]
where %L is the system characteristic frequency number.

For a rigid bearing uniform rotor W = [--
c L2

Speed ratio e-) %L 2 At the rigid bearing critical w/wc 1.0.

c

Characteristic number L = A
c

and A.l A e- () 2

c

2

2
C
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6. Flexibility ratio, 5 Ratio of the bearing clearance C to the central

deflection of a uniformly loaded simply-supported shaft, 5.

3C
7. Stiffness parameter, v = EIh -. Occurs non-dimensionally in the equa-

tions of motion. The relationship between V and - is as follows:
8

=5 WAL4

Central deflection of simply-supported 
uniform shaft 5 384 El

WAL
Static load per bearing W,= -2

Characteristic number %L = ,
c

Therefore V = EIk . - = 3 3/2
c

Stiffness parameter is therefore a dynamic deflection ratio, as shaft

stiffness depends on rotor speed. The range of flexibility ratio re-

quired for the analysis was established as follows:

Bearing Fundamental Rotor Shaft Lateral C
Case Clearance C. in. Critical Speed, rpm Deflectionin. _a_

Maximum 0.0050 14,000 0.002 30

Minimum O0005 4,000 0.015 0.3

The fundamental rotor critical speeds were chosen high in order to apply

to a simply-supported shaft in rigid bearings. Flexible bearing system
C

criticals will be considerably lower. The - values therefore will apply

to the range for rotor-bearing system fundamental critical speeds. The

above maximum - value therefore applies to a fairly rigid shaft in flex-8
ible bearings. The lowest critical speed will tend towards a rigid-body

critical and will be determined mainly by bearing flexibility and rotor
C

mass. The minimum value - 0.3 corresponds to a flexible shaft in8

rigid bearings. The lowest critical speed will tend to occur at /ac 1.0,

determined by shaft flexibility. These facts are of use in analyzing the

results given in Figures 6 through 24

8. Displacement amplitude ratio, -. Ratio of the maximum rotor displacement
e

x at a specified station to the unbalance eccentricity e.

9. Dimensionless transmitted force, 'C F
. Ratio of the maximum transmitted force

F to the unbalance W - e, normalized by the inclusion of the bearing clear-

ance C.



-5-

Bearing Properties

The bearing used in the present analysis is a cylindrical journal bearing.

Dynamic stiffness and damping characteristics are given below in Table I,

derived from Reference I in Appendix A of this report.

TABLE I

Spring and Damping Properties for Cylindrical Journal Bearing, L/D = I

0.2 0.5 0.7

K 1.283 2.060 3.59
xx
K 5°492 3V230 3.38
xy
K -4.610 -1.070 0.02
yx
K 2,220 2.040 1.99
yy
C 10,72 6.02 6.23
xx
C 1.950 2.00 1.95
xy
C 2,290 2,17 2.13
yx
C 9.770 3.40 2.00
yy
S 0.665 0.189 0.081

i 76,8 57,5 43.3

The cylindrical journal bearing is similar to the partial-arc bearing in opera-

tion because of the presence of cavitation in the film. Thus, the results ob-

tained for the system characteristics are representative for a wide range of

common applications. For systems which employ bearing types with important

differences, such as a tilting-pad bearing, the qualitative aspects of the results

still apply as a guide even though they are not then numerically correct.

Maximum Response Values

Response amplitude and transmitted force results are both given for the maximum

values for these parameters. The method of calculation for both maxima types

is given in the theoretical analysis, Section 3, and a diagrammatic representa-

tion of the component relationships which go to make up the force and displace-

ment maximum values is given in Figure 25
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Both static and dynamic unbalance characteristics are included in the above re-

sults. Details for Program 1 are given in Figures 6 through 24, and for Program

2 in Figures 26 and 27. All major system variables are exp:essed in terms

of dimensionless parameters

The results of the present investigation have been compared with those obtained

using a proven discrete-mass rotor-bearing program. Correlation was good

in all cases. The results are shown in Figure 28.
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THEORETICAL ANALYSIS OF ROTOR MOTIONS

General

The rotor-bearing system shown in Fig. 1 consists of a heavy elastic shaft of

uniform circular cross-section along its length, supported at its ends in

fluid-film bearings. The bearings have stiffness and damping properties in both

x- and y- directions, and also cross-coupling stiffness and damping between these

directions. Dimensionless values of the bearing stiffness and damping properties

with eccentricity are given in Table 1 for a cylindrical journal bearing.

The shaft considered has an unbalance W-e situated at distance L from Z - 0.

During rotation, this gives rise to an unbalance force Mew which rotates in

synchronism with the shaft, causing it to whirl about its stationary equilibrium

position. Shaft motions are restrained by its own inertia and elasticity, dis-

tributed uniformly along its length; and by the bearings at either end. The

bearing fluid film forces consist of a linear spring force which opposed dis-

placements, and a viscous damping force due to velocity. Any externally impressed

journal motion in a given direction gives rise to fluid-film forces which oppose

the motion, both in the direction of the displacement and at right angles to it.

The coordinate bearing forces arising from journal motion are written as

y-d- ection: F(Y) KW Y Cyy + K XqX + CiyX

x-direction: F() = Kx X + x 4 KVK Y + CyK

The unbalance force may also be resolved into the x- and y- directions. This

allows the usual equations for plane motions to be written for rotor displacements.

The solutions to these equations may be combined to yield the maximum displacements

and forces acting on the rotor.

The purpose of this investigation is to examine the nature of shaft displacements

and transmitted bearing forces which result from shaft unbalance in the system

described, over a wide range of speed.
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Basic Equations and Solutions

Considering motion in the y-direction of Figure (1), the equilibrium of an elemental

length of shaft dz subject only to internal forces is governed by the well-known

equation

El*4y 'IEA 'Y0
To41 '*1 (1)Et - 4  + -- -

The solution to Equation (1) is lo

-M (Z) e (2)

where y(z) is a function of z and independent of t. For the section 06 Z, LI

substitution gives

-[AIcos )z + Bsin A C, coshX - D, sh A 2. (3)

where .4iA 0o
AjEt

and Al, BI C1 and DI are constants of integration to be determined from the end

conditions of the section. For the section 0 4 Zx  L-1 the solution is

S[Ac&s Nzi.+ Bist-IAZx + 4Ci Oh)~zz + Dsmh)q~J eo (4)

where A2, B2, C2 and D2 are constants of integration.

Similarly, for motion in the x-direction, the governing equation is

E x V-A X 0(5)

For 0 z 4 L I  the solution is

E cc t Fs & z, CaSkiNAe Rje (6)

where E , F 1 G and H are constants of integration and X is as defined above.

For 0 Z. A L the solution is

2, a [ ar csant Fntegration. (7)

where E 2, F 2,G 2, and H 2 are constants of integration.
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Evaluation of Constants

The 16 constants of integration may be evaluated by introducink the solutions con-

taining them into the boundary conditions of the system. Adopting the conventions

of Figure 2 allows the boundary conditions to be expressed as follows:

0~ X- #~4fe A (Y. )(0) - 0 (8)

v y,)(0 - 0 (9)

where F('YXo) = K , (o) 4 C y (o) + K, X,(o) + C, ko) (10)

0; -z .ie .M.(xXo) - (11)
V(x,)(o) o a (12)

where F(.)(0) kxX, (o) + CX, (o) + KyY, C)+ io) (13)

7. L2  L-z plane. M (YXL.) 0 (14)

V('XLL) + F (JCLXL2) 0 (15)

where F(YAXL L) 2 C t2 (L-.) + KY, X).(L) C y , X(Ly16)

Z2. LI . -Z plane. M X)(La.) 0 (17)

V (X L,) + F (XXL) 0 (18)

where F (X)XL-) = C ,,, jX.(L.) + K, Y, (LI) 4 CW ,,(LQ (19)

Z,-L,: S-Z plane. , y(o) (20)
za.= 0:

OL((. o) (21)dz,

t4(Y1,XL,) = M (Y.o) (22)

-V('T, XL,) + Me [.e',]e 4 V(YQo)= 0 (23)

where Me& [0' e' is the y- component of the unbalance force acting at LI.

, . -2 eae. X () X (20

zj. 0,
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M(XXL,) M(XXo)

v(mXL,) + Meo.? + V(x1Xo) o
where Mec*? is the x- component of the unbalance force acting at L .

Substituting eqp. (3)-(7) int eqs. (8)-(27), and utilizing the moment and shear

relations

M (Y) - - E W, M(X) - Z 6

and

v(Y) -E' vLx ON ~~

allows the 16 basic equations of motion to be obtained.

Expressed in dimensionless form in terms of the integration constants, these equa-

tions are as follows:

A, ' = 0

A. ,e e

-4( 4 -j-B + +

e~ ~ e

0(3 + + O44 7) 1e e

A% Ol [+ cLL cer + SO., W + -bi

+ CPI(* AsLL -- SM A2 + 'CshAI senmh~ xI

e e e

E02. C = 0eI e

4- AA. Ea- 0
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+ A J ._ _ 4c j 0
e D A

+1 Co si x. + os L, o- L
£ e

_ ' -. §' si) 1  + ' J-N + ' 51.h,L

+- Ai

e DX A

+ e e

+ Fz _ _i + Co)..- L

-v. = x- - =0..

ee

e e e

ee

AL

.0 cas A4o~t + e* it
e e ee

e e

(28)

in vhich 1. .14
2_= Il eL

ALd3

=Y

(t e~x

kit.



- 4 -

w w-
kc'5  + a4 C!s) L1

w L o - o45"

o~~ts )csL 2 + cm 4 5nit 1

~<II ~ -Ps sn)4 + 0(1 Cos IM4

~ICa EC Sh + '( 4 SlnhA-L]
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It is convenient to reduce the preceding equations to a set of 6 simultaneous

equations in A1 B, i El F, H, to facilitate the computer solution which Is to

follow. After reducing and simplifying the equations become:

,.- + B.O + . 0

A .20(3 4 El. 0(. + 0

zve e

=0

Ej[COSk. - "AhL] + SOAAL- +
=0

At t, + A[O(S LS+ Cos ]
4 [ 4 c,A + 0C6 1L7 + 'O,- ['+>" + .Oo"hM] +)S-"l)L + - Sh"A)

= (V) [,,,, k ,, ,,- +,m.4)-d ,(c,,+-+)

4 . -+ D, + .,- ++ C >,,I,,s+ shh, A,,9_j~ [ce, S ), 0-(8L +rOc.~hL ) L)~AA]

The following expressions exist for the remaining constants in terms of the above

unkniowns.

A, c,

e

e e

e
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Af.. eS ALI + ;in ALI

Ba - +, .- , + L 1

e
4 e asb % r~~

C, Ao cosh)4 + B~ sO k)hAL -

4. e O

-1 = 4 E.inMAL

ee e

= E isnh )iL "JC LI 30

e e (30)

Calculation of Rotor Displacements

In the region 0 A =I * L I  , the respective coordinate displacements are

given by Eqs. (3) and (6). In order to determine the maximum and minimum values

of whirl amplitude, as shown in Figure 5, these equations must be expressed as

follows:

Eq. 3: Y = [A,,CeS NA + %. i5n iZ I e

Expanding the integration constants in terms of their real and imaginary parts

A, A ; A n g h aa

Thus, ~ A" A CA5 - Si (0r-t

where A = Ar COS.xzg + a+ixZ + DorsinhA +

CO X2 +~ BL~z So" N tZ, + C, coSh AZI + (31)

Rejecting the imaginary components gives the above Equations (31)
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Similarly, for the other coorai---iate defl,. xons:

Eq. 6: - - oh + F-i X7 4 61 ~,COSA )l, +~ 4, Sinii A7e,
..

r  -.. .. +4C,

Thus X E Cos - FsW''gt
where .weeE = Ft .)z I + Isu. z, -.s/.z, + H~smh~z,

(32)

The axes of the whirl amplitude ellipse may be calculated as follows:

Major axis: 2. EL + BE]'4 (33)F4S

Minor axis: I, = JLA~~E~ ~-f [L~~l~l4fA4B

Angle between x- axis and major axis of ellipse:

0C.r ~ 2.(AE +B 1O
.W e-(A' B-E'- ) (35)

Angle between major axis and unbalance force:

JL U4ft 2(AB + I)
I I L (A'- e e'- F") (36)

In the region 0 6 Z1. 4 Ll , rotor displacement amplitudes are given by Eqs.

(4) and (7). Operating on these in a similar manner to the above gives:

Y2. A ACos tot - o a

where A = A + r 2.1

B Ai Cos \z.. + cah7+
2. (37)

X2. E dS cot - F 16n ot

E~ k O)Z+F~' , (38)

The major axis a, minor axis b, position angle a and phase angle may again

be calculated by using Eqs. (33), (34), (35) and (36).
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Calculation of Transmitted F.rca

The force transmitted from the rotor to the bearings due to its motion may be

calculated by evaluating the end shear force acting on the rotor, as this force

is made up of the resultant spring and damping acting at that point. For the

left-hand bearing zI = o, from Eq. (9),

v(Yo) - F (Y.)(o) = 0

where

V (.,Xo) = - [ d3 S(o) - so Z1 +C, snh=A+ e

Rejecting the imaginary components, the dimensionless force in the y-direction

is given by

W-e
w h e r e A [ A is o z , - B 1rCO S) A 4 C ,'S Inh Az , + b lU zj

B - [At' swk-z - A iCas AA + C LSImh)~z, + 1jcaShA~Z. (39)

Similarly, the force in the x- direction is given by

Fc C E coswt - F sm (4t

where

E -~~ [E~rSaFIXA _ FrC&M, 4~~~i~,*Nroi~
(40)

IE -im hESI, - F1'Gas A2, + rqsj Az ,

Maximum and minimum values of the transmitted force at the left-hand bearing may

also be obtained from the properties of the transmitted force ellipse, described

by Eqs. (34) and (34) as follows:

,-1= [1A B" E4e F][
F e ]s- F /+[ 8 ] - 4 [-A F +BEJ " "

F,,- n J- [A -e+ E'+ P'] -J [A++ '] -4[-AF +8EJ]
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For the right-hand bearing Z2 = L2, the transmitted force in the y- direction is

found from Eq. (18)

V(Y XLO) + F (0)(L) = o

1hus 5f-cA4 o in Wt
W~e

where A %in [ N h)Z, 8cSNZ, + cisinh)21  + 4

B Cih [r Z-, '.CQ~b 4 %MX3 4 DCOSfi) Z,. (41)

Similarly, in the x- direction,

F" 0 L: w(of - F-SinuoW-e
where E = F;sn~~-*41khZ.+ Wehh~~

F = . i E %w - F,' Cos NZx+ 4 snXA 4- I4'CD'hi)z, (42)

Maximum and minimum values of the transmitted force and of the phase angle may

now be obtained using the above constants, by the previously described method.

The above equations have been programmed for computer solution. The program is

given in Appendix B. Computed results for maximum amplitude and maximum trans-

mitted force are shown graphically in Figures (6) to (24).
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RESULTS

General Features of the Results

The results obtained apply to ranges of parameters which identify the performance

characteristics of a high-speed rotor in fluid-film bearings. Also provided is

a maximum of design information. The location of the rotor unbalance on the

shaft determines the modes which may be excited in the motion. The speed, stiff-

ness ratio and bearing eccentricity govern the rotor amplitude and the transmitted

force. Table II, page 19 , lists the unbalance location and amplitude position

or transmitted force location for each of Figures 6 through 23. Two particular

cases have been examined in detail; (a) Midspan (static) unbalance LI = 0.50 L

and (b) unbalance at LI = 0.45 L and 0 55 L superimposed 180 degrees apart to

give the dynamic unbalance condition. The charts show:

(a) Variation of maximum rotor amplitude at a given station with speed, due

to rotor unbalance

(b) Variation of maximum transmitted force between rotor and bearing with

speed, due to rotor unbalance.

Using the charts and principles discussed in this section, a preliminary high-

speed rotor design may be established, Final design behavior may be examined

by use of the computer program listed in Appendix 2. The following is a dis-

cussion of certain features.

Unbalance at MidLpkark

Due to symmetry of the system, only symmetrical rotor modes may be excited.

Examples of these mode shares are given ii Figs. 26. Amplitude at this

unbalance position is large in all modes. Amplitude at the unbalance position

is shown in Figs. 6 through 8, for eccentricity ratios of 0.2, 0.5 and 0.7

respectively. Amplitude at the bearings is shown in Figs. 9 through 11. Trans-

mitted force at the bearings is indicated in Figs. 19 through 21.

Unbalance at L, =0.45 L and 0.55 L, Superimposed

This unbalance condition is also associated with large rotor displacements in the

lowest mode. Although the unbalance forces are symmetrically arranged about the

half-span point, the 180 degree phase difference between the forces causes a
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TABLE II

Details of System for Unbalance Response Calculations

Unbalance Amplitude Transmitted Bearing
Fig. No. Position Position Force Position Eccentricity Ratio

6 L1 = 0.5L, z I _ ii 0.2

7 Midspan Midspan 0.5

8 0.7

9 L1 = 0o5L. ZI = 0 0.2

10 Midspan left-hand 0.5
Bear ing

11 0.7

12 L1 =0.45 L z 1  025LI  0.2

13 0.5

14 0.7

15 11 0.45L zI  0 0.2

16 Left Hand 0.5
Bear ing

17 0.7

18 L1  0,45L ZI z L1  0.5

19 L1 0.5L Z1  0 0.2

20 Left-hand 0.5
Bearing

21 0.7

22 L1  0.45L Z 1 = 0 0.2

23 Left-hand 0.5

Bearing

24 0.7

moment to act on the rotor which gives rise to both symmetrical and asymmetrical

modes of oscillation, These modes are shown in Fig. 27. Amplitude response at

Z I = 0.25L1 is given in Figs. 12 through 14, close to the left-hand journal but

sufficiently on the rotor for the relative response of all modes to be present

in the results. Amplitude response at the left-hand bearing is shown in Figs. 15

through 17, and force transmitted at the left-hand bearing is indicated in Figs. 22

through 24. The amplitude versus speed results shown in Fig. 18 indicate the



-20-

displacement response at the unbalance position Z1 = L for asymmetrical unbalance.

Bearing eccentricity is 9 = 0.5. Response for two rotor stiffnesses is shown,

c/5 = 0.3 and c/B = 10.0.

Influence of Eccentricity Ratio n
.NLD. R 2

Each eccentricity value corresponds to a particular Sommerfeld Number ( )( R = S.

The relationship for the plain cylindrical bearing is shown in Fig. 25. In

calculating any particular rotor-bearing system, it is necessary to first cal-

culate the Sommerfeld Number corresponding to the bearing operating conditions.

Using Fig. 25, the eccentricity can be found, corresponding to the bearing L/D

ratio. The eccentricity so found allows the appropriate figures to be selected

for the determination of amplitude and transmitted force.

Influence of Unbalance on Rotor Dynamic Performance

The rotor-bearing system characteristics may be discussed conveniently in terms

of the following seven cases of response results:

1. Midspan amplitude; midspan unbalance. Influence of eccentricity ratio.

Figs 6, 7, 8.

2. Journal Amplitude; midspan unbalance. Influence of eccentricity ratio.

Figs, 9, 10, 11

3. Shaft amplitude at ZI 0.25; unbalance at LI/L = 0.45, 0.55.

Influence of eccentricity ratio. Figs. 12, 13, 14.

4 Journal amplitude; unbalance at L I/L = 0.45, 0.55. Influence of eccen-

tricity ratio. Figs 15, 16, 17,

5. Shaft amplitude at Z I/LI = 1, unbalance at L1/L = 0.45. Eccentricity

ratio q = 0,5. Fig. 18.

6. Transmitted force; midspan unbalance. Influence of eccentricity ratio.

Figs. 19, 20, 21.

7. Transmitted force; unbalance of LI/L = 0.45, 0.55. Influence of

eccentricity ratio. Figs. 22, 23, 24.

A number of general conclusions can be drawn from each case, and these are listed

below. The.terms "low speed range," "medium speed range," and "high speed range,"
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are used for convenience and refer approximately to speed ratios, 0 to 1.0,

1.0 to 10.0, and 10.0 to 24.0 respectively. Critical speeds are c

identified below by reference to these speed ranges, because changes in stiff-

ness parameter and unbalance position influence the modes which may appear in

the motion, and make comparison difficult along conventional lines.

Case A: Flexible bearings serve to:

(1) increase shaft amplitude in the low speed range,

(2) attenuate the fundamental critical amplitude,

(3) cause a critical speed with large amplitude in the medium

speed range.

Rigid bearings tend to:

(1) limit amplitude in the low speed range,

(2) cause a critical with large amplitudes around l/wc = 1.0

(Rigid bearing critical.)

(3) attenuate amplitude in the medium speed range.

Both bearing types tend to:

(1) cause a large critical in the high speed range, with larger

amplitudes in the case of flexible bearings.

The effect of increased journal eccentricity is:

(i) increased amplitude in the low speed range for flexible bearing case.

(2) increased the medium speed amplitude peak for flexible bearings.

(3) increased the number of small amplitude peaks throughout the speed

range, for both bearing types.

Case B: Flexible bearings tend to:

(1) increase journal amplitude in the low speed range,

(2) cause a large amplitude critical in the medium speed range,

Rigid bearings tend to:

(1) limit amplitude in the low speed range,
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(2) attenuate amplitudes in the medium speed range.

Both bearing types tend to:

(1) give similar amplitudes around w/wc = 1.0,

(2) give a critical in the same area in the high-speed range, with

larger amplitudes in the case of flexible bearings.

The effect of increased journal eccentricity is:

(1), (2), (3) same general effect as in Case A.

(4) decreased the low and medium speed attenuation in the case of rigid

bearings.

Case C: Flexible bearings tend to:

(1) increase journal amplitudes in the low speed range,

(2) give a large critical in the medium speed range,

(3) attenuate amplitudes below n/w c - 4.5.

Rigid bearings tend to:

(1) limit amplitudes in the low speed range,

(2) cause a critical around w/4x ) 1.0

Both bearing types tend to:

(1) create large amplitudes in the medium to high speed range,

(2) create a large critical in the highspeed range, with larger

amplitudes for flexible bearings.

The effect of increased journal eccentricity is:

(1), (3) as in Case A. No other major effect.

Case D: Similar tendencies to Case B occur.

The effect of increased journal eccentricity is:

(1), (3) as in Case A. No other major effect.
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Case E: Similar tendencies occur with bearing transmitted force to those

which occur with amplitude in Case B.

The effect of increased journal eccentricity is:

(1) Somewhat increased transmitted force in low speed range for

flexible bearings.

Case F: Flexible bearings tend to:

(1) increase transmitted force in the low speed range,

(2) promote an amplitude build-up in the medium speed range,

(3) give higher over-all transmitted forces throughout the speed range.

Rigid bearings tend to:

(1) limit transmitted force in the low-speed range,

(2) attenuate transmitted force in the medium speed range,

Both bearing types tend to:

(1) give similar force values around w/wc = 1.0,

(2) cause a large increase in transmitted force in the high speed

range, with highest values for flexible bearings,

(3) sustained high transmitted forces beyond high speed critical.

The effect of increased journal eccentricity is:

(1) As in case E.

Consideration of the above list reveals certain consistent tendencies which appear

in all cases. These may be explained as follows:

(a) increased bearing flexibility tends to limit rotor amplitude in the low

speed range. This is due to the normal attenuation which accompanies

any system flexibility and more effective use of squeeze-film damping

effects in the clearance. The critical speed is decreased because of

the added system flexibility. The upper limit of the fundamental

critical speed is the rigid bearing case, w/wc = 1.0.
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(b) Attenuation in the medium speed range is a normal condition for opera-

tion beyond the rigid bearing critical speed of any elastic rotor. In

the flexible bearing case, there is some attenuation beyond the first

low-speed critical. This critical is predominantly a bearing flexi-

bility, rigid-body effect. The amplitude peak in the medium speed

range is the second system critical. It includes both bearing

flexibility effects and shaft flexure effects.

(c) The high speed critical occurs at approximately the sam speed ratio for

all stiffnesses because here the bearings are effectively rigid and

the rotor oscillates as a pinned-pinned beam in the third harmonic mode.

(d) An increase in the number of small amplitude peaks for operation at

higher eccentricity ratios occurs because the respective stiffnesses

in the x and y directions of both bearings become significantly

different with increase in journal eccentricity. This tends to give

rise to two critical speeds, each associated with a particular coordinate

stiffness.

Bearing Attenuation

Figures 19 through 24 indicate that greater attenuation of transmitted force is

achieved by using a flexible rotor in relatively stiff bearings throughout the

low and medium speed ranges.

For symmetrical unbalance the transmitted force for a rigid-bearing flexible-

rotor system C/5 = 0.3, is often an order of magnitude lower than for a flexible-

bearing rigid rotor system. For both systems the transmitted force is of com-

parable magnitude in the high speed range, except at the high speed critical peak.

For unsymmetrical unbalance, the same general result occurs, but to a somewhat

lesser degree.

In the low speed range, operation at a bearing eccentricity of 0.5 gives the

greatest attenuation of transmitted force, for both unbalance conditions. At

this eccentricity the decrease is in the order of 15 to 20 percent over the other

eccentricities. For the medium speed range, the attenuation obtained in the flex-

ible bearing rigid-rotor case appears to increase with increase in eccentricity,

while in the rigid-bearing flexible-rotor case the attenuation decreases with



-25-

increase in eccentricity. In the high speed range, the degree of attenuation ob-

tained depends on both the nature of the unbalance and on the type of system, but

the general result is that operation at an eccentricity of 0.5 promotes the most

likely condition for obtaining good attenuation of transmitted force. In this

case, specific results should be obtained from the curves themselves.

In general, the results indicate that the operating eccentricity at which the

maximum attenuation of transmitted force occurs depends on the stiffness ratio of

the system, the nature of the unbalance and on the speed of operation. In the

low speed range n = 0.5 gives the greatest attenuation, but for higher speeds

this simple rule does not apply, and the curves must be used to select the operat-

ing eccentricity, and to examine how the run-up and run-down transmitted force

characteristics will be influenced by change in eccentricity with speed.

Comparison With Other Results

The results of the present investigation were verified against those given by

a proven existing computer program. This other program was based on the. Myklestad-

Prohl method of beam analysis, in which the rotor is divided into a specific

number of discrete mases, separated from each other by flexible members which

represent the rotor elasticity. The program includes the fluid-film bearing

properties as spring and damping coefficients in both the x- and y-directions in

the same manner as described in this report. The results of this comparison are

shown in Figure 28. It will be seen that the agreement is very close in all

cases. This existing program could have obtained all the results given herein,

but the computing time involved would have become increasingly greater for the

higher modes. The present analysis takes the same computing time whatever the

mode, and the results obtained are exact and independent of the number of 'aistrete

masses into which the rotor is divided.

The results obtained were also compared with those given in the earlier investi-

gation, References I and 2. No satisfactory correlation was obtained in either

case, for a number of reasons. The single disc rotor of Reference 1 has its mass

and unbalance concentrated at a single point. When the mass is'distributed' across

the span for comparison with the present work, the unbalance is, in effect, dis-

tributed also. This changes both the magnitude and nature of the disturbing force,
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and so changes the rotor response. No meaningful comparison was achieved in this

case. A similar condition occurred when a comparison was attempted with Reference

2. Rotor mass and unbalance are again concentrated at discrete points and so the

problem of distribution again arises. This instance is more complicated as the

properties of the first and second critical speeds are obtained uniquely for

either case from the equations, by adjusting the nature of the unbalance and its

position. This gives results which are properties of that mode alone. Static

and dynamic response results cannot be superimposed into an overall effect. Both

types of result wise naturally in the present analysis. Also, the results given

herein apply for circular cylindrical bearings, whereas the results of Reference

2 apply to the 150 degree partial arc bearing. In operation the dynamic proper-

ties of both bearing types are quite similar due to the presence of cavitation in

the cylindrical fluid film, This means that the present resultsmay be used to

obtain a fair indication of the performance of an elastic rotor in partial arc

bearings as well.

The results of comparison with other data are that excellent correlation was found

where the rotor and its operation was simulated exactly, using a computerized

discrete-mass approach and that no direct comparison was obtainable with other

published work because an adequate numerical comparison between the operating

unbalance condition, the rotor mass distribution, and the mechanism of modal

excitation could not be made.
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Mode Shapes

Symmetrical Unbalance

Figure 26 applies to the operating conditions shown in Fig. 7, C/5 = 10.0 and

= 0.5. The five mode shapes correspond to major features of that curve. Local

amplitude peaks occur at speed ratios of 0.6, 2.25 and 12.0. Local minima occur

at 1.50 and 9.0. Figure 26 indicates che rotor form under these conditions.

The damping introduced by the bearings serves to limit the peak amplitudes, and

to increase the magnitude of the attenuation which may be realized between

critical speeds. This is evident from the amplitude scales shown, and also from

Fig. 7. The heavily attenuated low-speed critical at w/wc = 0.60 is mainly

composed of rigid body shaft displacement within the bearings, with a slight

amount of bending. At w/c = 1.50 the local maximum attenuation occurs, but the

increased speed effects plus the high stiffness and damping present hold the

amplitude to two-thirds of the first crtical amplitude at midspan, and give rise

to amplitudes at the ends which are greater than those of the first critical.

The increased bending associated with higher speeds is clearly shown in the

second critical speed mode shape at w/wc = 2.25. This mode is similar in form to

the fundamental free-free vibration of a uniform beam. The results show that

flexible shafts tend cowards pinned-pinned beam modes, while rigid shafts tend

toward free-free modes, because for a flexible shaft the bearings control the

motion, whereas in the latter case, the shaft properties alone determine its

modal form.

A second attenuation trough occurs at w/w = 9.00. Amplitude at midspan is

small, but elsewhere it is of moderate size with a maximum at the ends of 4.2.

The third critical occurs at w/w C = 12.00. The motion is almost wholly bending,

and the form corresponds to the third mode of a free-free beam. The speed-

dependent forcing promotes the large amplitudes which are indicated.

In this instance, the symmetry of the system and its excitation do not allow

motions with asymmetrical modes to occur.

Asymmetrical Unbalance

The influence of dynamic moment unbalance on the previously discussed operating
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conditions, c/5 = 10.0 and r = 0.5, is shown in Fig. 27. Figure 13 indicates the

amplitude response. The low speed rigid-body critical speed occurs at n/wC - 0.9.

The motion is mainly translation with some rocking and no bending. This speed

constitutes a 50 percent rise over the previous unbalance case, but there is

significant decrease in amplitude level. There is very little bending present

in this mode. At /wc = 3.q, an attenuation trough exists. The mode shape here

is similar to the free-free beam fundamental. The second critical speed occurs

at w1/ = 6.0. This corresponds to the second free-free beam modal form, and

the increased existing force again begins to promote large amplitudes with the

higher speeds. This mode is almost wholly bending. The third critical speed

occurs at w/wc = 20.0, accompanied by even higher amplitudes, with a shape

corresponding to the fourth free-free beam mode. There is an order of magnitude

amplitude decrease within the intervening trough between criticals, which means

that between w/w = 5.0 and 25.0 midspan amplitudes never decrease below (x/e)c

= 1.0 and are usually much larger for most of this range. Modal form within the

amplitude trough was not determined, but is is likely that it would be similar to

the third free-free beam nDde, considering the above-mentioned sequence of free-

free beam forms.

The moment unbalance tends to give rise to even free-free modes more readily than

to the odd modes. These latter tend to occur in the amplitude "troughs", which

themselves are often associated with large amplitudes, probably because they

contain suppressed criticals.
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CONCLUSIONS

1. A study has been made of the dynamic behavior of an unbalanced elastic rotor

supported in damped fluid-film bearings. Extensive numerical results have

been obtained for amplitude response and transmitted force, over wide ranges

of speed, system stiffness and bearing operating conditions.

2. The results indicate that rotor motions are largely determined by the inter-

action between rotor stiffness and bearing stiffness; and by the type of

unbalance, force or moment, which is present in the system.

3. A flexible rotor tends to vibrate in modes which are determined by the

rigidity of the bearings, i.e., as a pinned-pinned beam. A rigid rotor

vibrates as a rigid body at low speeds, but where bending effects predominate,

its motions are similar to those of a free-free beam.

4. Symmetrical unbalance excites only those modes which are symmetrical about

midspan. Unsymmetrical or moment unbalance excites mainly motions which are

unsymmetrical about midspan, and suppresses the symmetrical motions somewhat.

5. The operating eccentricity corresponding to maximum transmitted force attenua-

tion depends on the stiffness ratio of the system, the nature of the unbalance,

and on the speed of operation. In the low-speed range q = 0.5 gives the

greatest attenuation, but for higher speeds this simple rule does not apply

and the curves given herein must be used to select the condition of optimum

operation.

6. The results obtained may be used directly as a guide towards a preliminary

design. The performance of the final design may be obtained by using the

computer program listed herein.

7. Correlation between the results obtained herein and those given by a com-

parable computer program of known accuracy has been demonstrated.
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APPENDIX A. Notation for Spring and Damping Coefficients

Reference 1 lists the dimensionless bearing stiffnesses as:

K K K K
xx Ay YX Y
1 C 1 xW1 14 4
c c c c

where K , y, K , Ky are the bearing stiffness coefficients in the xx, xy,

yx and yy directions respectively.

c is the bearing clearance and

= where S = Sommerfeld Number

and Wj= bearing load.

Similarly the dimensionless bearing damping is given as

WC C Q C

1 11
c c c c

where Cxx' Cxy2 C yx, Cyy are the bearing velocity damping coefficients in the

xx, xy, yx and yy direction respectively.

Notation used differs bet aen References 1 and 2 respectively, and in the present

report. For ease of comparison the following table has been prepared.
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TABLE II

Comparative Listing of Symbols Used for Stiffness and Damping Coefficients

Lund and Sternlicht (1) Warner and Thoman ()Present Work

K xxCK /W K x

K yyCK /W K y

- K xyCDIyW K X

- K -xCD x/W K y

C xxCB w/W C x
xx YY CBx ux C

-C CB w/W C

KY yK xy

-C yCB w c/W C y
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C MECHANICAL TECHNOLOGY INCe. LATHAMN*Yo, ST5-0922 Jo MICHAUD

C PNO121 VIBRATION ANALYSIS OF A UNIFORM BEAM

DIMENSION SPD(l00) ,DEFL(15),DIST( 1O),A(6,6),B(6,6),C(6)tD(6)

DIMENSI1ON E(12.12) ,F(12),!PIVO(12) ,PIVOT(12),LEE1(1O),ZEE2(10)

1 READ 743

REAL) 71 )t SXX*SXYSYXgSYY

RlEAD 71109 0XXDXY9DYX9DYY

2 READ 72,-j NSPDNDEFLNDIST ,NZEElNZEE2. INPUTsNDIAG.NZ

DO 650 JJ=19NDISTs5

650 READ 7309 DIST(JJ),DISTCJJ+1),DIST(JJ+2),DIST(JJ+3),DIST(JJ+4)

DO 66J MM=19NDEFL95

660 READ 730, DEFL(MM),DEFL(MM+1),DEFL(MM+2),DEFL(MM+3),DEFL(MM+4)

DO 673 II=1,NSPD95

670 READ 7309 SPD(II),SPDCII+1),SPD(11+2),SPDCII+3),SPD(11+4)

IF (NZ) 68796749687

674 IF (NZEE1) 67596759680

675 RFAD 7359ZEE2(l)

NNN=2

KFORK1l

ZEE=ZEE2( 1)

GO TO 690

680 DO 685 I=19NZEE195

685 READ 7309 ZEE1(1),ZEEJ1+1),ZEE1(1+2),ZEE1(1+3),ZEE1(1+4)

IF (NZEE2) 688,688,689

688 NNN1l

KFORK 1

ZEE=ZEE 1(1)

GO TO 690

689 DO 686 I11NZEE295

686 READ 730,ZEE2(I),ZEE2(1+1),ZEE2(1+2),ZEE2(1+3),ZEE2(I+4)

KFORK=2
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GO TO 690

687 READ 73J9 ZIZ2*ZEE

KFORK=1

NNN=1

690 WRITE OUTPUT TAPE 39 762

WRITE OUTPUT TAPE 3, 743

WRITE OUTPUT TAPE 3, 740, SXX*SXYtSYXSYY

WRITE OUTPUT TAPE 39 741, DXXtDXY*DYXtDYY

DO 9-0 JJ=1,NDIST

DO 910 MM=19NDEFL

GO TO (6919692)sKFORK

691 WRITE OUTPUT TAPE 39 744

WRITE OUTPUT TAPE 3s 745

WRITE OUTPUT TAPE 39 746, DIST(JJ)9DEFLIMM),NNN9ZEE

WRITE OUTPUT TAPE 3, 747

GO TO 695

692 WRITE OUTPUT TAPE 39 751

WRITE OUTPUT TAPE 39 745

695 DO 920 II=1wNSPD

GO TO (8109805)9KFORK

805 WRITE OUTPUT TAPE 39 752, SPD(II)*DIST(JJ~tDEFL(MM)

WRITE OUTPUT TAPE 39 780

810 DIST2=1*0-DIST(JJ)

VAR1=3,1415927*SQRTF(SPD(II))

ARG1=DIST JJ)*VAR1

ARG2=DIST2*VAR1

GNU=0257021*DEFL(MM,*SPDCII)*VAR1

VAR2=COSFCVARi)

VAR3=SINF(VARl)

VAR4=COSFCARGi)

VAR5=SINF(ARG1)
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VAR6=CQSF(CARG2)

VAR7=S INF(CARG2)

VAR9=EXPF (VARl)

VAR8=(VAR9+1 .O/VAR9) /2.0

VAR9=(VAR9-1 0/VAR9)/29O

VAR11=EXPF(ARGI)

VAR10=(VAR11+leO/VAR11)/2@
0

VARi11 (VARi 1-1 .0/VARi 1)/2.0

VAR 13=EXPF(ARG2)

VAR12=(VAR13+1*O/VAR13)/2*0

VAR13=(VAR13leO0/VAR13)/2*O

AFR5=-GNtU*VAR7+SYY*VAR6

AFI5= DYY*VAR6

AFRb= GNU*VAR6+SYY*VAR7

AF16= DYY*VAR7

AFR7=-GNU*VAR13+SYY*VAR1 2

AF17= UYY*VAR12

AFR8=-.GNU*VAR12+SYY*VAR1 3

AF18= DYY*VAR13

AFR9=-GNU*VAR7+SXX*VAR6

AF19= DXX*VAR6

AFR10=GNU*VAR6+SXX*VAR7

AF110 DXX*VAR7

AFRi 1=-GNU*VAR13+SXX*VAR12

AF111 DXX*VAR12

AFR12=-GNU*VAR1 2+SXX*VAR1 3

AF112= DXX*VAR13

T HA4=SVAR 7+ VAR 13

THA7=VAR7-VAR13

A (191) 290*SYY

A(19,2)=-GNU



A( (193) =GNU

A( 1 4)=2*O*SYX

A( 19.6) =0.0

Al 291) =2*0*SXY

A(2 2) 0 0

A (2,4) =2*0*SXX

A (2 .5) =-GNU

A (2 96) =GNU

A (3,1) =VAR2-VAR8

A (3.2) =VAR3

Al 3 3) =-VAR9

A (3,4) =0.0

A( 395) =0.0

A (3,6) =00

A (4,1) =00

A (4,4) =VAR2-VAR8

A (4,5) =VAR3

A (4,6) =-VAR9

A (5,1) =AFR5*VAR4-AFR6*VAR5+AFR7*VAR1O+AFR8*VAR1 1

A (5,2) =AFR5*VAR5eAFR6*VAR4

A(593) =AFR7*VARI1+AFR8*VAR1O

A (5,4) =SYX* IVAR2+VAR8)

AC 5,53 =YX*VAR3

A (5,6) =SYX*VAR9

A(6*1)=SXY *(VAR2+VAR8)

A(692)zSXY *VAR3

A(693)=SXY *VAR9
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A(694)=AFR9*VAR4-AFR1O*VAR5+AFR11*VAR10+AFR12*VAR11

A (6,5)= A FR 9 *VAR 5 +AFRJ10* VAR 4

A(b .6 =AFR11*VAR11+AFR 12* VAR 10

BC 191)=2*0*DYY

8(1 .2) =0.0

8(1.3) =0.0

9(1 .4) =2*0*DYX

8(1 ,5) =0.0

8(196) =0.0

B (291) =2*0*DXY

B(292)=090

8(2,3) =0.0

B(2,4)=2.0*DXX

B ( 2,95) =0.0*

B (2 *6) =0.0

B(391) =090

B(3 2 ) =0.O0

B(393) =0.0

8(394) =0.0

8(3,5) =0.0

B(396) =0.0

8(4,1) =0.0

B(492) =0.0

8(493) =0.0

8(4,4) =0.0

B ( 4 95) = 0.90

8(4,6)=0.0

B(591)=AF5*VAR4-AF6*VAR5+AF7*VAR10+AFIS*VARI1

8 (5%2)=AF5*VAR5+AFI6*VAR4

8(5.3 )=AFI7*VAR11+AFI8*VAR1O

8(594) =DYX*( VAR2+VAR8)
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B (595) =DYX*VAR3

B (5o6) =DYX*VAR9

b(b,1)=L)XY *(VAR2+VAR8)

8(6t2h=DXY *VAR3

6(693)=DXY *VAR9

B(694)=AF19*VAR4-AF1O*VAR5+AF111*VAR1O+AFI12*VAR11

B (6,5) =AF1I9*VAR5+AFIIO *V'AR4

BC696)=AFII1*VARII*AFI12*VARJO

C Cl1) (i *

C (2) =00

C C 3) =0.0

C (4)=0)* 5*VARI1*THA4

C(5)=0.5*VAR1*(THA7*SYX +(AFI6-AFI8))

C(6)=0.5*VARI*C(AFR1O-AFR12)+THA7*DXY)

D( 1 ) =0.0

D ( 2) = 0.*0

D (3) =-0&5*VAR1*THA4

DC 4) =0.0

D(5)=0.5*VARI*(rHA7*DYX -(AFR6-AFR8))

D(6)=U.5*VARl*C(AFIIO-AFI12)-THA7*SXY)

IFCNDIAG) 9,1599

9 DO 11 1=196

11 WRITE OUTPUT TAPE 3, 791,ACI,1),A(I,2),A(193),A(I,4),A(I,5),A(I,6)

DO 13 1 =1,96

13 WR IT E OUTPUT TAPE 39 791,B(1,1),B3(I,2),B(I,3),BCI,41,B(1,5)vB(I96)

WRITE OUTPUT TAPE 39,7919 C(l),C(2)9C(3),C(4)9C(5)9C(6)

WRITE OUTPUT TAPE 3, 791, D(1),0C2)oD(3),0C4)9D(5)9D(6)

C THIS' PROGRAM SOLVES A SYSTEM OF LINEAR EQUATIONS AX:B3

C WHERE THE VARIABLES ARE COMPLEX

C A=MATRIX OF REAL PART OF THE COMPLEX SYSTEM

C B=MATRIX OF IMAGINARY PART OF COMPLEX SYSTEM



C C=COLUMN VECTOR OF THE REAL PART OF THE RIGHT-HAND VECTORS

C D=COLUMN 14ATRIX OF THE IMAGINARY PART OF THE RIGHT-HAND VECTORS

C THE UNKNOWN COLUMN MATRIX X IS STORED IN C AND D

C C bEING THE REAL PART AND 0 THE IMAGINARY PART

15 N=6

DO 1J I=19N

00 10 J=1,N

10 E(IJ)=A(IJ)

LL=N+I

LM=2*N

DO 12 I=19N

DO 12 J=LLtLM

K=J-N

12 E(IJ)=-B(IK)

DO 14 I=LLLM

DO 14 J=1N

KK=I-N

14 E(I*J)=B(KKJ)

DO 16 I=LL9LM

DO 16 J=LLiLM

K=J-N

KK=I-N

16 E(IJ)=A(KKK)

DO 18 J=IN

18 F(J)=C(J)

DO 22 J=LLLM

K=J-N

22 F(J)=D(K)

N=LM

DO 20 J=1,N

20 IPIVO(J)=O
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DO 550 I=1N

C F4020015

C SEARCH FOR PIVOT ELEMENT F4020016

C F4020017

AMAX=O*

DO 1U5 J=IN

IF (IPIVO(J)-1) 60,105,60

60 DO 100 K=1,N

IF (IPIVO(K) -1) 80, 100, 600

80 IF (AMAX) 62,63,63

62 AMAX=-AMAX

63 IF (E(JK)) 64,65,65

64 TOOT=-E(J,K)

GO TO 67

65 TOOT=E(JK)

67 IF (AMAX-TOOT) 8591009100

85 IROW=J

ICOLU =K

AMAX=EIJK)

100 CONTINUE

105 CONTINUE

IPIVO(ICOLU)=IPIVO(ICOLU)+l

C F4020030

C INTERCHANGE ROWS TO PUT PIVOT ELEMENT ON DIAGONAL F4020031

C F4020032

IF (IROW-ICOLU) 140, 260, 140

140 DO 200 L=1,N

AMAX=E(IROWL)

E(IROWtL)=E(ICOLUtL)

20 E(ICOLUL):AMAX

AMAX=F(IROW)



F(IROW)=F( ICOLU)

F( ICOLUJ):AMAX

260 PIVOT(I)=E(ICOLU9ICOLU)

C F4020048

C DIVIDE PIVOT ROW BY PIVOT ELEMENT F4020049

C F4020050

EC ICOLUgICOLU)=190

DO 350 L=1,N

350 E CICOLU*L)=E( ICOLU*L) /PIVOT( I)

F( ICOLU)=F( ICOLU)/PIVOT( I

C F4020057

C REDUCE NON-PIVOT ROWS F4020058

C F4020059

DO 550 L1=1,N

IF(Ll-ICOLU) 400, 5509 400

400 AMAX=E(L1.ICOLU)

E(Ll9ICOLU) =0.0

DO 450 L=19N

450 E(L1,L)=E(L1,L)-E( ICOLUL)*AMAX

F(L1)=F(L13-FCICOLU)*AMAX

550 CONTINUE

600 N=N/2

DO 641 J=19N

641 CCJ)=F(J)

DO 645 J=LL#LM

K=J-N

645 D(K)=F(J)

CSR2=C( 1)*VAR10+C(3)*VAR11

CS 2=D( 1) *VAR1O+D (3 )*VAR1 1

GSR2=C (4)4VAR1O+C(C6)*VAR1 1

G512=D(4)*VAR10+D(6)*VAR11
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DSR2=C(1)*VAR11+CC3)*VARIO

DSI2=UC1)*VARJ1+D(3)*VAR1O-O.5*VAR1

H5R2=C(4)*VAR11+C(6)*VAR1O+0.5*VAR1

Hl"12=L(4)*VAR1I+D(6)*VARlo

ESR2=C( 4)*VAR4+C(5 )*VAR5

[3! 2=D(4 )*VAR4+D( 5) *VAR5

FSR2=-C (4)*VAR5+C( 5)*VAR4-O.5*VAR1

FSI2=-D(4)*VAR5+D( 5)*VAR4

ASR2=C( 1)*VAR4+CC2)*VAR5

ASI2=D( 1)*VAR4+D(2)*VAR5

BSR2=-C( 1)*VAR5+C(2)*VAR4

BSI2=-D(1)*VAR5+0(2)*VAR4+0.5*VAR1

IF(NDIAG) 643t644,643

643 WRITE OUTPUT TAPE 39 7919 C(1)sC(2'i.C(3)*C(4)vC(5)sC(6)

WRITE OUTPUT TAPE 39 791. D(1)*D(2)*D(3)*O(4)*D(5)*D(6)

WRITE OUTPUT TAPE 39 791# CSR2sCSI2965R29GSI29DSR29DSI2

WRITE OUTPUT TAPE 39 7919 HSR2,HS129ESR29ES129FSR29FS12

WRITE OUTPUT TAPE 3t 7919 ASR2,ASI2#bSR2*bSI2

644 G0 TO (8109812)9 KFORK

810 IF (NZ) 150U.81191500

811 G0 TO (812983O)tNNN

812 DO 2000 I=19NZEE1

ZAR1=ARG1*ZEE1( I)

VAR14=COSF(ZARl)

VAR15=SINF (ZAR1)

VAR 19sEXPF(ZAR1)

VAR18= (VAR19+1.0/VAR19 )/2@0

VAR19=(VAR19-1*0/VAR19) /2.0

F I =VAR14+VAR18

AR1=C( 1)*( Fll )+C(2)*VAR15+C(3)*VAR19

BI1=D( 1)*( Fll )+D(2)*VAR15+D(3)*VAR19
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ER1=C(4)*( F Ii )+C(5)*VAR15+CC61*VAR19

FI1=DC4)*( Fll )+D( 5 *VAR15+D(6)*VARl9

SUBi1=AR1**2+bI 1**2+ER1**2+Fll*1*2

SUil+ER1*BI 1-Fl 1*AR1

SU1313=ER1*AR1+FI 1*f311

SUB14=-ER1**2-Fl1**2+AR1**2+BI 1**2

SUB15= ERI*FIl+AR1*Bl

SUB16=ER1**2-FI 1**2+AR1**2-BI l**2

AMAXX=SQRTF(SUB1l**2-4.0*SUBl2**2)

AMAX1SO0RTF (0.5*SUB1l+0.5*AMAXX)

BMIN1=SQRTF( 0.5*SuBl1-0.5*AMAXX)

OAL1=0*5*ANG(SUBl4s2*0*SUB13)

OBLi=O.5*ANG( SUB16,2*0*SU815)

IF (ZEEI(Il 91199129911

911 AMAX=AMAXL

BMIN=BMINI

OAL=OALI

OBL=OBL1

GO TO 950

912 FAR1=GNU*(C(2)-C(3))

FBII=GNU*(D(2)-D(3))

FER1=GNU*(C(5)-C(6)

FFII=GNU*(DC5)-D(6))

FS Bll=FER1**2+FF11**24FAR1**2+FI11**2

FS B12=FER1*FBI1-FF1l*FAR1

FSB13=-FER1**2-FFI 1**2+FAR1**2+FBI1**2

FS B14=FER1*FAR1+FFI1*FbiI1

FMAXX=SQRTF( FSB1 1**2-4eO*FSBl2**2)

FMAX1=SQRTFI 0.5*FSB11+0.5*FMAX)

FM1N1=SQRTF(C.5*FSB11-0.5*FMAXX)

FALF1=095*ANG(FSB1392*0*FSB14)



AMAXrAMAXI

BMIN=BMIN1

OAL=OALl

OBL=OBLI

FMAX=FMAXI

FM! N=FM IN1

FALF=FALF1

GO TO 960

950 GO TO C9029909)gKFORK

902 WRITE OUTPUT TAPE 39 7499 SPD(II)9AMAXBMINsOAL#OBL

GO TO 2000

909 WRITE OUTPUT TAPE 39 7689ZEE1(I)9AMAXsbMIN#QAL9O6L

GO TO 2000

960 GO TO (9229928)9 KFORK

922 WRITE OUTPUT TAPE 39 7709 SPD(II),AMAX,8MINOALOBLFMAXFMINFALF

GO TO 2000

928 WRITE OUTPUT TAPE 39 7729 ZEE1(I),AMAXBMIN.OALOBLFMAXFMINFALF

2000 CONTINUE

GO TO ( 920,9830 ), KFORK

830 D0 3000 I=19NZEE2

ZAR2=ARG2*ZEE2( I)

VARl6wCOSF (ZAR2)

VAR17=SINF CZAR2)

VAR21=EXPF (ZAR2)

VAR20=(VAR21+190/VAR21 )/2*0

VAR21=(VAR21-1.O/VAR21 )/2oO

AR2=ASR2*VAR16+BSR2*VAR17+CSR2*VAR20+DSR2*VAR21

B12=A512*VAR16+BSI2*VAR17+CS12*VAR2O+DSI2*VAR21

ER2zESR2*VAR16+FSR2*VAR1 7+GSR2*VAR2O+HSR2*VAR21

F12=E51I2*VAR16+FS12*VAR17+GSI2*VAR20+HS12*VAR21

SUB21=AR2**2+B12**2+ER2**2+F 12**2



5(UB22=LR2*b1 2-FI2*AR2

SUb23=ER2*AR2+F 12*812

SUl124=-ER2**2-F I2**2+AR2**2+81l2**2

SUb25= ER2*F12+AR2*B12

SUb26=ER2**2-F I2**2+AR2**2-blI2**2

AMAXX=SURTF( SUb2l**2-~4.0*SUB22**2)

AMAX2=SORTF (C.5*5UE321+0.5*AMAXX)

BMIN2=S0RTF ( .. 5*SU821-0.5*AMAXX)

OAL2=O.5*ANGC SUB24*2*0*SUB23)

OBL2=0*5*ANC( SUB26*2*0*SU825)

IF (ZEE2(II-1.0) 91499159914

914 AMAX=AMAX2

BMIN=BMIN2

OAL=OAL2

OBL=08L2

GO TO 970

915 FAR2= GNL*(ASR2*VAR7-BSR2*VAR6+CSR2*VAR13+DSR2*VAR12)

FBI2= GNU*(A512*VAR7-b$I 2*VAR6+CSI12*VAR13+DS12*VAR12)

FER2= GNU*( ESR2*VAR7-FSR2*VAR6+GSR2*VAR13+HSR2*VAR12)

FF 12= GNU*(ES12*VAR7-F%12*VAR6+G512*VAR13+HSI2*VAR12)

FS £21=FER2**2+FFI2**2+FAR2**2+F81I2**2

FS 122=FER2*FB12-FF12*FAR2

F SB23 =- FER 2 **2-F F12* *2 +FAR2 ** 2 +F B 12** 2

FS B24=FER2*FAR2+FFI2*Fbl2

FMAXX=SQRTF( FSB21**2-4.o*FSB22**2)

FMAX2=SQJRTF( 0.5*FSB21+O.5*FMAXX)

FMIN2=SQRTF( O.5*FSB21-0.5*FMAXX)

FALF2=O.5*ANG (FS323 ,2.o*FSb24)

AMAX=AMAX2

BMIN=BMIN2

OAL=OAL2
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ObL=08L2

F MAXzF MAX 2

FMIN=FMIN2

FALF =FALF2

GO rO 980

970 GO TO (9729978),KFORK

972 WRITE OUTPUT TAPE 39 7499 SPDUII),AMAXE3MIN9OAL9OBL

GO TO 3300

978 WRITE OUTPUT TAPE 39 7659 ZEE2(I)9AMAXBMIN9OAL9OBL

GO TO 3000

980 GO TO C9829986)9. KFORK

9B2 WRITE OUTPUT TAPE 39 7709 SPD(1I),AMAXbMINOALOBLFMAXFMIN.FALF

GO TO 3000

986 WRITE OUTPUT TAPE 3s 7749 ZEE2(1lAMAXBMINOALOBLFMAXFMINFALF

30U0 CONTINUE

GO TO 920

1500 ZARI=ARG1*Zl

VAR14=COSF(ZARl)

VAR15=SINF(ZAR1)

VAR 19=EXPF CZAR 1)

VAR 18=(VAR19+A1.0/VAR19)/2*0

VAR19=(CVAR19-1 .O/VAR19 )/2.0

F Ii=VAR 14+VAR18

AR~zC( 1)*( Fll )+C(2)*VAR15+C(3)*VAR19

BI1=D( 1)*( Fil )+DC2)*VAR15+D(3)*VAR19

ER1=C(4)*( Fl )+C( 5)*VAR15+C(6)*VAR19

FI1=D(4)*( F11 )+O( 5,*VAR15+O(6)*VAR19

ZAR2=ARG2*Z2

VAR 16=C0SF(ZAR2)

VAR17=SINF(ZAR2)

VAR21=EXPF (ZAR2)
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VAR20=(VAR21+1.O/VAR21A/2o0

VAR21=(VAR21-190/VAR2I)/2*0

AR2=Al-N2*VAR16+BSR2*VAR1 7+CSR2*VAR2O+fM6R?*VAR2 1

B12=ASI2*VAR16+3S12*VAR17+CS12*vAR2O+D512*VAR21

ER2=ESR2*VAR16+FSR2*VAR1 7+cGJR2*VAR2O+HSR2*VAR2 1

F 12=E"I12*VAR16+FS1I2*VAR17+GS1 2*VAR20+H5 12*VAR2 1

YY1=ARI-AR2

XX1=bllk-B12

YY2=ERl-ER2

XX2=F 11-Fl 2

SUB31=YYI**2+XX1**2+YY2**2+XX2**2

SUb32=YY2*XX 1-XX2*YY 1

SUB333YY2*YY 1+XX2*XX1

SUb34=-YY2**2-XX2**2+YYI**2+XXI**2

SUB35=YY2*XX2+YY1*XX1

SUB36=YY2**2-XX2**2+YY1**2-XXI**2

AMAXX=SQRTF( SUB31**2-4.O*SUB32**2)

AMAX =SQRTF(O.5*SUB31+095*AMAXX)

BMIN =SWRTF(0*5*SUb3l-O.5*AMAXX)

OAL =0.5*ANG(SUB34s2*0*Sub33)

OBL =0.5*ANG(SUB36,2.0*5UB35)

IF (ZEE) 11009105091100

1050 FAR1=GNU*(C(2)-C(3))

FBII=GNU*(DI2)-D(3))

FERl=GNU*(C(5)-C(6))

FFI1=GNU*(D(5)-D(6))

FAR2= GNU*(ASR2*VAR7-t35R2*VAR6+CSR2*VAR13+DSR2*VAR12)

Fbl2= GNU*(AS512*VAR7-t3S12*VAR6+CS12*VAR13+DS12*VAR12)

FER2= GNU*CESR2*VAR7-FSR2*VAR6+GSR2*VAR13+HSR2*VAR12)

FF 12= GiNU* (ES I2*VAR7-FSl 2*VAR6+GSI2*VAR13+H-112*VAR12)

FAR= FARI-FAR2
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FBI= FBII-FB12

FER= FERI-FER2

FFI= FF11-FF12

FSb3l=FER**2+FF 1**2+FAR**2+FBI**2

FSb32=FER*FU I-FF I*FAR

FSI333=-FER**2-FF I**2+FAR**2+FblI *2

FSB34=FER*FAR+FF I *FB

FMAXX=SCQRTF (FSk331**2-4.0*FSE332**2)

FMAX3=SQRTF( O.5*FSB31+O.5*FMAXX)

FMIN3=SORTF( O.5*FSB31-0.5*FMAXX)

FALF =0.5*ANG(FSB3392*O*F5834)

WRITE OUTPUT TAPE 39770,SPD(II),AMAXBMINOALOBLFMAX3,FMIN3,FALF

GO TO 920

1100 WRITE OUTPUT TAPE 397499 SPD(II)s AMAX, BMIN, OAL, OBL

920 CONTINUE

910 CONTINUE

900 CONTINUE

GO TO (19 29 3500), INPUT

3560 CALL ENDJOB

735 FORMAT (E1599)

743 FORMAT(49H

710 FORMAT(4E15*9)

720 FORMAT(815)

730 FORMAT (5E1.094)

740 FORMAT(5HOSXX=,E11.5,6X4HSXY=,Ell.5,6X4HSYX=,E11.5,6X4HSYY=,E11.5)

741 FORMAT( 5HODXX,9E11.5,6X4HDXY~,E11.5,6X4HDYX:,Ell.5,6X4HDYY=E11.5)

744 FORMATf1Hls38 X30HUNBALANCE AMPLITUDE RESPONSE)

745 FORMAT(IHO,24X48HALL VALUES TAbULATEU BELOW ARE DIMENSIONLESS)

746 FORMAT(1H0923Xl3HUNBAL* L1/L =9F6.3,3Xl3HSTIFFN RATIO=gE11.59

12 X3HZ EE , 2,1H=9,F6*3)

747 FORMAT(7H0 SPEED,6X4HAMAX,8X4H-BMIN7X5HALPHA,7X4HBETA99X4HFMAX,



-91
18X4HFMIN97X5HPHASE)

751 FORMAT1IHI*33X30HMODE SHAPE FOR GIVEN SPEED)

762 FORMAT (Irii)

752 FQ.RMAU1jHO21X11H5PD RATIO =9F69294XllH-UNBAL L1/Lz#F6.39

14X14HSTIFFN RATIO =oEl1.5)

780 FORMAT(12HOZ1/Ll Z2/L2,4X4HAMAX,8X4HBMIN,5XbHALPHA,8X4H8ETA,8X4HFM

TAX8X4HFMIN98X5HPHASE)

765 FORMAT C6XF5.2,1XE11.5.1XE11.5,1XE11.5.1XE11 .5)

768 FORMAT( 1XF5.2,6XE11.5,LXE11.5,1XEll.5,1XE11.5)

770 FORMATI 1XF6.2,2XE11.5,1XE11.5,1XE11.5,1XE11.5,1XE11.5,1XE11.5,1XE1

11.o5,

772 FORMAT( 1XF5.2,6XL11.5,1XE11.5,1XL115,1XE11.5,1XE11.5,1XE11.5,1XE1

11.e51

774 FORMAT(bXF5.2,1XE11 .5.1XE1 1.5,1XEl1.5,1XE11 .5,1XE11.5,1XE11.5,1XE1

11.5 )

749 FORMAT( 1XF6.2,2XE11.5,1XEl1.5tlXE11.5,1XE11.5)

791 FORMAT( 1XE12.6,1XE12.6,1XE12.691XE12.6.1XE12.6.1XE12.6)

END
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NOTATION

A Area of cross-section of rotor

a, b Whirl ellipse major and minor diameter

AIB1 C D1  Constants of integration, region 1

A2B 2C 2D2

C Bearing clearance

C C C C Velocity coefficients for bearing damping

D Bearing diameter

E1F1G 1 H Constants of integration, region 2

E Modulus of elasticity

e Eccentricity of unbalance

e Base of natural logarithms, 2.71828 ....

F Force

g Gravitational acceleration

I Second moment of area of rotor section

i/7
K K KK Spring coefficients for bearing stiffnessxx xy yx yy
L Length of rotor

L Length of bearing

Li, L2  Length of regions 1 and 2

aLength ratio LI/L

M Rotor mass

M(X), M(Y) Coordinate bending moments

N Rev/Min

R Bearing radius

S Sommerfeld number "- -'LDI [ ] 2

t Time

V Shear Force

W Rotor weight

W Static Bearing load 2
'2
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w Weight density

X(t) Time-dependent displacement

x() x-displacement

Y(Z) Time-dependent displacement

y(z) y-displacement

z Rotor length coordinate

al, ... Variables defined in text

a Phase angle

Phase angle

Deflexion o4 uniformly loaded shaft,

38 El )
'Bearing eccentricity

0 Bearing attitude angle 2 1/4

Frequency parameter W"-

v Stiffness parameter, (EIX3 ).(2)

3.14159 ...

P Mass density

PViscosity

Angular velocity rad/sec

w c Critical speed of uniform rotor in rigid
bearings.


